Project description:Poorly understood microorganisms "short-circuit" the nitrogen cycle via the dissimilatory nitrate reduction to ammonium to retain the element in agricultural lands and stimulate crop productivity. The prevalence of Geobacterales closely related to Trichlorobacter lovleyi in nitrate ammonification hotspots motivated us to investigate adaptive responses contributing to ammonification rates in the laboratory type strain T. lovleyi SZ. Here we describe the identification of tightly regulated pathways for efficient nitrate foraging and respiration with acetate, an important intermediate of organic matter degradation that Geobacterales efficiently assimilate and oxidize. Challenging the established dogma that high carbon/nitrate ratios stimulate the reduction of nitrate to ammonium, T. lovleyi doubled rapidly across a wide range of ratios provided nitrate concentrations were low enough to prevent the accumulation of the toxic nitrite intermediate. Yet, excess electrons during hydrogenotrophic growth alleviated nitrite toxicity and stimulated the reduction of nitrate to ammonium even under conditions of severe acetate limitation. These findings underscore the importance of nitrite toxicity in the ammonification of nitrate by Geobacterales and provide much needed mechanistic understanding of microbial adaptations contributing to soil nitrogen conservation. This information is critical to enhance the predictive value of genomic-based traits in environmental surveys and to guide strategies for sustainable management of nitrogen fertilization as well as mitigation of green-house emissions and agrochemical leaching from agricultural lands.
Project description:Adaptive responses of Trichlorobacter lovleyi to nitrite detoxification reveal overlooked contributions of Geobacterales to nitrate ammonification
Project description:A bacterial isolate, designated strain SZ, was obtained from noncontaminated creek sediment microcosms based on its ability to derive energy from acetate oxidation coupled to tetrachloroethene (PCE)-to-cis-1,2-dichloroethene (cis-DCE) dechlorination (i.e., chlororespiration). Hydrogen and pyruvate served as alternate electron donors for strain SZ, and the range of electron acceptors included (reduced products are given in brackets) PCE and trichloroethene [cis-DCE], nitrate [ammonium], fumarate [succinate], Fe(III) [Fe(II)], malate [succinate], Mn(IV) [Mn(II)], U(VI) [U(IV)], and elemental sulfur [sulfide]. PCE and soluble Fe(III) (as ferric citrate) were reduced at rates of 56.5 and 164 nmol min(-1) mg of protein(-1), respectively, with acetate as the electron donor. Alternate electron acceptors, such as U(VI) and nitrate, did not inhibit PCE dechlorination and were consumed concomitantly. With PCE, Fe(III) (as ferric citrate), and nitrate as electron acceptors, H(2) was consumed to threshold concentrations of 0.08 +/- 0.03 nM, 0.16 +/- 0.07 nM, and 0.5 +/- 0.06 nM, respectively, and acetate was consumed to 3.0 +/- 2.1 nM, 1.2 +/- 0.5 nM, and 3.6 +/- 0.25 nM, respectively. Apparently, electron acceptor-specific acetate consumption threshold concentrations exist, suggesting that similar to the hydrogen threshold model, the measurement of acetate threshold concentrations offers an additional diagnostic tool to delineate terminal electron-accepting processes in anaerobic subsurface environments. Genetic and phenotypic analyses classify strain SZ as the type strain of the new species, Geobacter lovleyi sp. nov., with Geobacter (formerly Trichlorobacter) thiogenes as the closest relative. Furthermore, the analysis of 16S rRNA gene sequences recovered from PCE-dechlorinating consortia and chloroethene-contaminated subsurface environments suggests that Geobacter lovleyi belongs to a distinct, dechlorinating clade within the metal-reducing Geobacter group. Substrate versatility, consumption of electron donors to low threshold concentrations, and simultaneous reduction of electron acceptors suggest that strain SZ-type organisms have desirable characteristics for bioremediation applications.
Project description:Leishmania donovani WHO reference strain MHOM/IN/80/DD8 and Leptomonas seymouri isolates Ld 2001 and Ld39 were used for proteome analysis which were originally isolated from clinical cases of kala azar patients with different inherent antimonial sensitivities. Ld 2001 was Sb-S and Ld 39 was Sb-R. The genome sequencing of these isolates had confirmed co-infection with Leptomonas.