Project description:To unravel complex dynamics of environmental disturbance and microbial metabolic activities, we set up laboratory microcosms to investigate the effects of SO42- and O2 alone or in combination on microbial activities and interactions, as well as the resulting fate of carbon within wetland soil. We used proteogenomics to characterize the biochemical and physiological responses of microbial communities to individual perturbations and their combined effects. Stoichiometric models were employed to deconvolute carbon exchanges among the main functional guilds. These findings can contribute to the development of mechanistic models for predicting greenhouse gas emissions from wetland ecosystems under various climate change scenarios.
Project description:This dataset contains raw files for metabolites collected from the soil and roots of four wetland plant species under non-sterile conditions, both in soil and hydroponically, during the day and night time periods.
Project description:Wetland microbiomes play a crucial role in the global carbon cycle by modulating soil organic carbon (SOC) and greenhouse gas (GHG) emissions. Understanding how microbial communities respond to environmental changes is essential for predicting wetland carbon fluxes under future climate scenarios. Here, we investigated the biogeochemistry of a temperate lacustrine wetland across four seasons and three soil depths, integrating greenhouse gas flux measurements, porewater metabolite profiles, metagenomics, metabolomics, and metaproteomics. While seasonal shifts in GHG fluxes and porewater chemistry were evident, microbial community composition and function were primarily structured by soil depth, suggesting resilience to short-term seasonal fluctuations. Depth-correlated microbial taxa and metabolic pathways revealed distinct stratification: surface soils were enriched in metabolically versatile Gammaproteobacteria capable of oxygen and nitrate respiration, as well as methane and sulfur oxidation, whereas deeper layers favored strict anaerobic metabolism, with increasing abundances of Anaerolinea and Methanomicrobia. Metabolomics showed an enrichment of purine nucleotides and amino acids at the surface, while deeper soils accumulated amino sugars and phenolic compounds, highlighting differences in carbon processing. Metaproteomics confirmed active metabolic pathways, linking functional potential to microbial activity. By integrating multi-omics with biogeochemical measurements, this study provides a system-level view of wetland microbial function and resilience, contributing to predictive models of wetland carbon cycling under future climate change.
The work (proposal:https://doi.org/10.46936/10.25585/60000490) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.
Project description:Investigation of mRNA expression (using HiSeq 2500) in response to treatment of Daphnia magna to pyriproxyfen, wetland water, or stormwater samples.
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and of two beneficial, and neutral soil bacteria during their interactions in vitro.
Project description:Some soil bacteria promote plant growth, including Pseudomonas species. With this approach we detected significant changes in Arabidopsis genes related to primary metabolism that were induced by the bacteria.