Project description:We apply developmental and single cell gene expression analysis to fetal skin of domestic cats, together with genetic characterization of Mendelian color variation, to identify when, where, and how, during fetal development, felid color patterns are established. Prior to the appearance of hair follicle placodes, we identify changes in epidermal thickness that represent a signature of color pattern establishment, and that are preceded by a pre-pattern of gene expression in which the secreted Wnt inhibitor encoded by Dickkopf 4 (Dkk4) plays a central role. We also demonstrate that mutations in Dkk4 underlie the Ticked pattern mutation in cats. Our results bring molecular understanding to how the leopard got its spots, suggest that similar mechanisms underlie periodic color pattern and periodic hair follicle spacing, and provide a genomic framework to explore natural selection for diverse pattern types in wild felids.
Project description:Intricate color patterns are a defining aspect of morphological diversity in the Felidae. We applied morphological and single-cell gene expression analysis to fetal skin of domestic cats to identify when, where, and how, during fetal development, felid color patterns are established. Early in development, we identify stripe-like alterations in epidermal thickness preceded by a gene expression pre-pattern. The secreted Wnt inhibitor encoded by Dickkopf 4 plays a central role in this process, and is mutated in cats with the Ticked pattern type. Our results bring molecular understanding to how the leopard got its spots, suggest that similar mechanisms underlie periodic color pattern and periodic hair follicle spacing, and identify targets for diverse pattern variation in other mammals.
Project description:Feline calicivirus (FCV) is a key pathogen causing upper respiratory diseases and oral ulcers in cats, with significant genetic variability. This study aimed to isolate the FCV-BJ616 strain, investigate its pathogenic mechanisms, and provide insights for developing antibody therapies and broad-spectrum vaccines. The virus was purified through three rounds of plaque cloning, and its morphology was observed via electron microscopy. Immunofluorescence and Western blotting confirmed VP1 protein expression. Using systems biology and reverse genetics, an infectious clone of rFCV-BJ616 was constructed and recovered. The recombinant virus maintained genetic stability similar to the parental strain. Animal experiments showed that rFCV-BJ616 exhibited wild-type virulence, causing persistent high fever, weight loss, and multi-organ pathology in infected cats. Proteomic analysis revealed that FCV activates cytokine pathways, causing elevatedIL-8 and IFN-βlevels, leading to a cytokine storm. This study enhances understanding of FCV-BJ616's genetic evolution and successfully established a reverse genetics platform for FCV, enabling precise manipulation of the virus at the genomic level and providing a controllable and reproducible experimental basis for systematic studies on its replication, pathogenesis, and vaccine attenuation mechanisms.
Project description:Many animals exhibit typical color patterns that have been linked to key adaptive functions, yet the developmental mechanisms establishing these crucial designs remain unclear. Here, we surveyed color distribution in the plumage across a large number of passerine finches. Despite extreme apparent pattern diversity, we identified a small set of conserved color regions whose combinatory association can explain all observed patterns. We found these domains are instructed by signals from embryonic somites and lateral plate mesoderm, and through profiling and comparative analyses, produced a molecular map marking putative color domains in the developing skin. This revealed cryptic pre-patterning common to differently colored species, uncovering a simple molecular landscape underlying extensive color pattern variation.
Project description:MicroRNAs negatively regulate gene expression and may serve as biomarkers for human cardiomyopathy. In the domestic cat, hypertrophic cardiomyopathy (HCM) represents the most common primary cardiomyopathy. In humans, the etiology of HCM is linked to mutations in genes of contractile muscle proteins, while in cats a clear proof for causal mutations is missing. The etiology of feline HCM is uncertain. Diagnosis is made by heart ultrasound examination and measuring the serum level of N-terminal pro B-type natriuretic peptide. The purpose of this study was to investigate whether microRNA profiles in the serum of cats with HCM are different from the profiles of healthy cats and whether specific miRNAs can be detected to serve as potential biomarkers for feline HCM or may help in understanding the etiology of this disease Blood was drawn from two groups of cats: 12 healthy cats and 11 cats suffering from hypertrophic cardiomyopathy. After clotting, samples were centrifuged and total mRNA was extracted from serum. These 23 serum samples were analyzed and the groups were compared
Project description:The Sex-linked orange mutation in domestic cats causes variegated patches of reddish/yellow hair and is a defining signature of random X-inactivation in female tortoiseshell and calico cats. Unlike the situation for most coat color genes, there is no apparent homolog for Sex-linked orange in other mammals. We show that Sex-linked orange is caused by a 5 kb deletion that leads to ectopic and melanocyte-specific expression of the Rho GTPase Activating Protein 36 (Arhgap36) gene. Single cell RNA-seq studies from fetal cat skin reveal that red/yellow hair color is caused by reduced expression of melanogenic genes that are normally activated by the Melanocortin 1 receptor (Mc1r)—cyclic adenosine monophosphate (cAMP)—protein kinase A (PKA) pathway, but Mc1r and its ability to stimulate cAMP accumulation is intact. Instead, we show that expression of Arhgap36 in melanocytes leads to reduced levels of the PKA catalytic subunit (PKAC); thus, Sex-linked orange is genetically and biochemically downstream of Mc1r. Our findings resolve a longstanding comparative genetic puzzle, provide in vivo evidence for the ability of Arhgap36 to inhibit PKA, and reveal a molecular explanation for a charismatic color pattern with a rich genetic history.
Project description:The Sex-linked orange mutation in domestic cats causes variegated patches of reddish/yellow hair and is a defining signature of random X-inactivation in female tortoiseshell and calico cats. Unlike the situation for most coat color genes, there is no apparent homolog for Sex-linked orange in other mammals. We show that Sex-linked orange is caused by a 5 kb deletion that leads to ectopic and melanocyte-specific expression of the Rho GTPase Activating Protein 36 (Arhgap36) gene. Single cell RNA-seq studies from fetal cat skin reveal that red/yellow hair color is caused by reduced expression of melanogenic genes that are normally activated by the Melanocortin 1 receptor (Mc1r)—cyclic adenosine monophosphate (cAMP)—protein kinase A (PKA) pathway, but Mc1r and its ability to stimulate cAMP accumulation is intact. Instead, we show that expression of Arhgap36 in melanocytes leads to reduced levels of the PKA catalytic subunit (PKAC); thus, Sex-linked orange is genetically and biochemically downstream of Mc1r. Our findings resolve a longstanding comparative genetic puzzle, provide in vivo evidence for the ability of Arhgap36 to inhibit PKA, and reveal a molecular explanation for a charismatic color pattern with a rich genetic history.
Project description:BACKGROUND: MicroRNAs negatively regulate gene expression and play a pivotal role in the pathogenesis of human type 2 diabetes mellitus (T2DM). As the domestic cat presents a spontaneous animal model for human T2DM, the purpose of this study was to investigate whether microRNAs are detectable in feline serum and whether microRNA expression profiles differ between healthy and diabetic cats. METHODS: Total RNA was extracted from 400 M-BM-5l serum of healthy lean (HL) and newly diagnosed diabetic (D) cats. MicroRNA microarrays representing 1079 distinct mouse miRNA targets were used to measure miRNA expression in samples from eight HL and eight D cats. RESULTS: By microarray, 227 distinct microRNAs were identified. Nineteen miRNAs were differentially expressed in diabetic cats, but only two reached statistical significance after correction for multiple comparisons. In qRT-PCR, miR-122* was found to be upregulated in diabetic cats more than 40-fold compared to HL cats, while miR-193b was upregulated about 10-fold. MiR-483* showed a 6- fold increase in diabetic cats compared to HL cats. CONCLUSIONS: Small volumes of serum samples yield sufficient material to detect altered microRNA expression profiles in diabetic cats. The domestic cat may be considered a useful animal model for studying miRNAs involved in human T2DM. Blood was drawn from two groups of cats: 8 healthy cats and 8 cats suffering from diabetes. After clotting, samples were centrifuged and total mRNA was extracted from serum. These 16 serum samples were analyzed and the groups were compared. Due to technical problems during hybridization (leaking chamber), sample 1_4_B (Serum_diabetic_8) was not included into analysis.
Project description:We investigated gene expression levels in Heliconius erato butterflies with divergent wing patterns across a 656KB genomic interval linked to the red color pattern wing polymorphism. This included comparison of expression between two H. erato color pattern populations (H. e. petiverana and a H.e. etylus x H. himera hybrid) across three sections of the forewing that differed in pigmentation (the basal, mid, and distal wing sections) and five different stages of pupal development (Day 1, 3, 5 pupae and ommochrome and melanin pigmentation stages). These results allowed us to determine whether certain genes in this interval were differentially expressed between the wing pattern elements, and, therefore, potentially responsible for adaptive color pattern variation in these butterflies.