Project description:Chimeric antigen receptor T-cell (CAR-T) therapy is at the forefront of cell immunotherapy. In this study, we generated an anti-CD19 CAR-Jurkat T cell line using a locally produced second-generation CD19 CAR construct, enabling us to analyze early proteomic changes crucial for understanding the signaling pathways and mechanisms of action of this CAR-T cell. SILAC-heavy tagged RAJI B-cells and anti-CD19 CAR-Jurkat T-cells were co-cultured for ten minutes. The proteomic profiles were obtained via DIA methodology on the Orbitrap Astral LC-MS/MS platform. The proteome was extensively covered, resulting in approximately 8800 protein identifications at 1% FDR. The effector CAR-Jurkat cells showed proteomic changes involving antigen presentation by CD74. The target RAJI B-cells exhibited more significant alterations, such as CD28, essential for T-cell survival and activation.
Project description:Treatment with chimeric antigen receptor (CAR) T-cell therapy targeting CD19 (CAR19) can cause neurotoxicity in patients. The role of microglia in CAR19-induced neurotoxicity was unclear. We observed morphological microglia alterations, increased production of GM-CSF, MCP-1 and TNF by microglia and neurocognitive deficits in B-cell lymphoma-bearing mice upon CAR19 transfer. Gene expression analysis was performed to determine the microglial activation and downstream signalling in response to CAR19 transfer.
Project description:In contrast to patients with B cell precursor acute lymphoblastic leukemia (BCP-ALL), patients with acute myeloid leukemia (AML) have not yet benefited from recent advances in targeted immunotherapy. Repurposing immunotherapies that have been successfully used to target other hematological malignancies could, in case of a shared target antigen, represent a promising opportunity to expand the immunotherapeutic options for AML. Here, we evaluated the expression of CD19 in a large pediatric AML cohort, assessed the ex vivo AML killing efficacy of CD19-directed immunotherapies, and characterized the bone marrow immune microenvironment in pediatric AML, BCP-ALL, and non-leukemic controls. Out of 167 newly diagnosed de novo pediatric AML patients, 18 patients (11%) had CD19+ AML, with 61% carrying the translocation t(8;21)(q22;q22). Among CD19+ samples, we observed a continuum of CD19 expression levels on AML cells. In individuals exhibiting unimodal and high CD19 expression, the antigen was consistently present on nearly all CD34+CD38- and CD34+CD38+ subpopulations. In ex vivo AML-T cell co-cultures, blinatumomab demonstrated substantial AML killing, with an efficacy similar to BCP-ALL. In addition, CAR T cells could effectively eliminate CD19+ AML cells ex vivo. Furthermore, our immunogenomic assessment of the bone marrow immune microenvironment of newly diagnosed pediatric t(8;21) AML revealed that T- and NK cells had a less exhausted and senescent phenotype in comparison to pediatric BCP-ALL. Altogether, our study underscores the promise of CD19-directed immunotherapies for the treatment of pediatric CD19+ AML.
Project description:To investigate celltype and function of hemangioma mural cells We then performed gene expression profiling analysis using data obtained from RNA-seq of hemangioma mural cells and hemangioma stem cells.
Project description:Purpose: Pericytes, the mural cells of blood microvessels, have come into focus as regulators of microvascular development and function, but due to paucity of defining markers, the identification and functional characterization of PC remain problematic, and reported data are often controversial. Here, we used a new approach for the isolation of mural cell from mouse brain in combination with RNA-sequencing (RNA-seq) and previously published vascular transcriptome data to assemble a state-of-the-art catalogue of brain mural cell-enriched gene transcripts. Methods: We isolated double positive cells from the brain of Pdgfrb-eGFP/NG2-DsRed transgenic mice using FACS. Cells were lysed, RNA extracted and sequenced with next-generation sequencing (NGS). For comparison, we also determined the transcriptome of brain microvascular fragments (containing both endothelial cells and mural cells) isolated by mechanical tissue disintegration, collagenase digestion and immune-panning using anti-CD31 antibodies coupled to magnetic beads. The reads were aligned to the Ensembl mouse gene assembly (NCBIM37) using Tophat2 software (version 2.0.4). The duplicated reads were removed using the picard tool (version 1.92). To identify the genes significantly enriched in the pericyte samples as compared with microvascular samples, statistical tests were performed using the Cufflinks tool (version 2.2.1) Results: The result showed that mRNA transcripts representing 856 different genes were enriched more than two-fold in FACS isolated Pdgfrb-eGFP/NG2-DsRed double positive cells compared with whole microvascular fragments (False Discovery Rate < 0.05) The RNA from three FACS sorted brain mural cell samples and three whole brain microvascular samples isolated from three animals were processed and sequenced on the Illumina HiSeq 2500 platform in the sequencing facility in Uppsala University.