Project description:Sensing of pathogens by Toll-like receptor 4 (TLR4) induces an inflammatory response; controlled responses confer immunity but uncontrolled responses cause harm. Here we define how a multi-modular scaffold, GIV (a.k.a Girdin) titrates such inflammatory response in macrophages. Upon challenge with microbe-derived lipopolysaccharides (LPS, a ligand for TLR4), macrophages with GIV mount a more tolerant (hypo-reactive) transcriptional response and suppress pro-inflammatory cytokines and signaling pathways (i.e., NFkB and CREB) downstream of TLR4 compared to their GIV-depleted counterparts.
Project description:Sensing of pathogens by Toll-like receptor 4 (TLR4) induces an inflammatory response; controlled responses confer immunity but uncontrolled responses cause harm. Here we define how a multimodular scaffold, GIV (a.k.a. Girdin), titrates such inflammatory response in macrophages. Upon challenge with either live microbes or microbe-derived lipopolysaccharides (a ligand for TLR4), macrophages with GIV mount a more tolerant (hypo-reactive) transcriptional response and suppress proinflammatory cytokines and signaling pathways (i.e., NFkB and CREB) downstream of TLR4 compared to their GIV-depleted counterparts. Myeloid-specific gene-depletion studies confirmed that the presence of GIV ameliorates dextran sodium sulfate-induced colitis and sepsis-induced death. The antiinflammatory actions of GIV are mediated via its C-terminally located TIR-like BB-loop (TILL) motif which binds the cytoplasmic TIR modules of TLR4 in a manner that precludes receptor dimerization; such dimerization is a prerequisite for proinflammatory signaling. Binding of GIV's TILL motif to TIR modules inhibits proinflammatory signaling via other TLRs, suggesting a convergent paradigm for fine-tuning macrophage inflammatory responses.
Project description:Interferon (IFN)γ and interleukin (IL)-4 are central regulators of T helper 1 (Th1) and T helper 2 (Th2) immune responses, respectively. Both cytokines have a major impact on macrophage phenotypes: IFNγ–priming and subsequent TLR4 activation induces so called classically activated macrophages that are characterized by pronounced pro-inflammatory responses, whereas IL-4–treated macrophages, commonly called alternatively activated, are known to develop enhanced capacity for endocytosis, antigen presentation, and tissue repair and are generally considered anti-inflammatory. Considering IL-4 as priming rather than activating stimulus, we now compared the TLR4–dependent global gene activation program in IFNγ– versus IL-4–pretreated mouse macrophages, which has rarely been studied so far. Although both cytokines frequently induced opposing effects on gene transcription, the subsequent activation of bone marrow-derived macrophages by lipopolysaccharide (LPS) produced a strong, priming dependent pro-inflammatory response in both macrophage types. For example, the production of key pro-inflammatory cytokines IL-6 and IL-12 was significantly higher in IL-4– versus IFNγ–primed macrophages and several cytokine genes, including Il19, Ccl17, Ccl22, Ccl24 and Cxcl5, were preferentially induced in alternatively primed and LPS activated mouse macrophages. In a subset of genes, including IL12a, IFNγ priming was actually found to suppress LPS–induced gene expression in a Stat1–dependent manner. Our data suggest that IL-4–priming is not per se anti-inflammatory but generates a macrophage that is “tissue protective” but still capable of mounting a strong inflammatory response after TLR4–dependent activation. Keywords: Gene expression profiling Gene expression was investigated in mouse bone marrow-derived macrophages (BMM). On day 7, BMM were stimulated with either IL-4 or IFNγ overnight (18h in total). LPS treatment was performed in primed and unprimed macrophages 4 h prior to harvesting. At least three independent experiments were performed for each condition.
Project description:In sepsis, acute lung injury (ALI) is a severe complication and a leading cause of death, involving complex mechanisms that include cellular and molecular interactions between immune and lung parenchymal cells. In recent decades, the role of Toll-like receptor 4 (TLR4) in mediating infection-induced inflammation has been extensively studied. However, how TLR4 facilitates interactions between innate immune cells and lung parenchymal cells in sepsis remains to be fully understood. This study aims to explore the role of TLR4 in regulating macrophage immunity and metabolism in greater depth. It also seeks to reveal how changes in these processes affect the interaction between macrophages and both pulmonary endothelial cells (ECs) and lymphatic endothelial cells (LECs). Using TLR4 knockout mice and the combined approaches of single-cell RNA sequencing and experimental validation, we demonstrate that in sepsis, TLR4-deficient macrophages upregulate Abca1, enhance cholesterol efflux, and reduce glycolysis, promoting M2 polarization and attenuating inflammation. These metabolic and phenotypic shifts significantly affect their interactions with pulmonary ECs and LECs. Mechanistically, we uncovered that TLR4 operates through multiple pathways in endothelial dysfunction: macrophage TLR4 mediates inflammatory damage to ECs/LECs, while endothelial TLR4 both directly sensitizes cells to lipopolysaccharide-induced injury and determines their susceptibility to macrophage-derived inflammatory signals. These findings reveal the complex role of TLR4 in orchestrating both immune-mediated and direct endothelial responses during sepsis-induced ALI, supporting that targeting TLR4 on multiple cell populations may present an effective therapeutic strategy.
Project description:The NFκB family of transcription factors is a major regulator of the innate immune responses, and its dysregulation has been linked to several inflammatory diseases. In this study we focused on bone marrow derived macrophages from the recently described p65-DsRed/IκBα-eGFP transgenic strain, in which a human copy of RelA (p65) was introduced into the mouse genome. Confocal imaging analysis showed that the human RelA is expressed these cells and can translocate to the nucleus upon Toll-like receptor 4 activation (TLR4). RNA sequencing analysis of polysaccharide-stimulated macrophage cultures, revealed that the extra copy of human RelA impacts on gene transcription, affecting both NFκB and non-NFκB target genes, including immediate-early and late response NFκB target genes, such as Fos and Cxcl10, respectively. In validation experiments on NFB targets we observed reduced mRNA levels, but similar expression kinetic profile of the transgenic cells compared to the wild type. Enrichment pathway analysis based on the differentially regulated genes revealed that interferon and cytokine signaling, are affected downstream TLR4. These immune response pathways were also affected when the macrophages were treated with tumor necrosis factor. The impact of genetic manipulation on cell-specific functions is particularly important and highlights the need of understanding the molecular basis on which complicated in vitro and in vivo experiments will be designed on.
Project description:Interferon (IFN)γ and interleukin (IL)-4 are central regulators of T helper 1 (Th1) and T helper 2 (Th2) immune responses, respectively. Both cytokines have a major impact on macrophage phenotypes: IFNγ–priming and subsequent TLR4 activation induces so called classically activated macrophages that are characterized by pronounced pro-inflammatory responses, whereas IL-4–treated macrophages, commonly called alternatively activated, are known to develop enhanced capacity for endocytosis, antigen presentation, and tissue repair and are generally considered anti-inflammatory. Considering IL-4 as priming rather than activating stimulus, we now compared the TLR4–dependent global gene activation program in IFNγ– versus IL-4–pretreated mouse macrophages, which has rarely been studied so far. Although both cytokines frequently induced opposing effects on gene transcription, the subsequent activation of bone marrow-derived macrophages by lipopolysaccharide (LPS) produced a strong, priming dependent pro-inflammatory response in both macrophage types. For example, the production of key pro-inflammatory cytokines IL-6 and IL-12 was significantly higher in IL-4– versus IFNγ–primed macrophages and several cytokine genes, including Il19, Ccl17, Ccl22, Ccl24 and Cxcl5, were preferentially induced in alternatively primed and LPS activated mouse macrophages. In a subset of genes, including IL12a, IFNγ priming was actually found to suppress LPS–induced gene expression in a Stat1–dependent manner. Our data suggest that IL-4–priming is not per se anti-inflammatory but generates a macrophage that is “tissue protective” but still capable of mounting a strong inflammatory response after TLR4–dependent activation. Keywords: Gene expression profiling
Project description:To explore the downstream molecules that are responsible for the regulatory role of macrophage-specific TLR4 during inflammatory responses, we analyzed the transcriptome profile of BMDMs isolated from tlr4f/f and tlr4f/f-lysM-Cre mice with or without LPS stimulation by PolyA RNA sequencing.
Project description:Toll-like receptor 4 (TLR4) sensing of lipopolysaccharide (LPS), the most potent pathogen-associated molecular pattern of gram-negative bacteria, activates NF-κB and Irf3, which induces inflammatory cytokines and interferons that trigger an intense inflammatory response, which is critical for host defense but can also cause serious inflammatory pathology, including sepsis. Although TLR4 inhibition is an attractive therapeutic approach for suppressing overexuberant inflammatory signaling, previously identified TLR4 antagonists have not shown any clinical benefit. Here, we identify disulfiram (DSF), an FDA-approved drug for alcoholism, as a specific inhibitor of TLR4-mediated inflammatory signaling. TLR4 cell surface expression, LPS sensing, dimerization and signaling depend on TLR4 binding to MD-2. DSF and other cysteine-reactive drugs, previously shown to block LPS-triggered inflammatory cell death (pyroptosis), inhibit TLR4 signaling by covalently modifying Cys133 of MD-2, a key conserved residue that mediates TLR4 sensing and signaling. DSF blocks LPS-triggered inflammatory cytokine, chemokine, and interferon production by macrophages in vitro. In the aggressive N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease (PD) in which TLR4 plays an important role, DSF markedly suppresses neuroinflammation and dopaminergic neuron loss, and restores motor function. Our findings identify a role for DSF in curbing TLR4-mediated inflammation and suggest that DSF and other drugs that target MD-2 might be useful for treating PD and other diseases in which inflammation contributes importantly to pathogenesis.