Project description:Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. But it still remains unclear which mechanisms or pathways are involved in the interactions between PGPR and plants. To understand the complex plant-PGPR interactions, the changes in the transcriptome of typical PGPR standard Bacillus subtilis in responding to rice seedlings were analyzed.
Project description:Rice roots grown in hydroponic culture were inoculated with rice blast fungus and gene expression profiles were analyzed by microarray Roots of two isogenic lines of rice cv Nipponbare (blast-resistance gene: Pia or pia) were inoculated with rice blast fungus, P91-15B, carrying avirulence gene, AvrPia. Total RNA was isolated from crown roots, labeled with cy3, and probed with agilent rice oligoarray (4x44).
Project description:Treatment of rice roots with glutamate (Glu) induces systemic disease resistance against rice blast in leaves. To analyze the effect of Glu on the transcriptome of rice, rice roots were treated with Glu solution, and then fourth leaves were harvested and analyzed by Agilent rice microarray.
Project description:Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. But it still remains unclear which mechanisms or pathways are involved in the interactions between PGPR and plants. To understand the complex plant-PGPR interactions, the changes in the transcriptome of typical PGPR standard Bacillus subtilis in responding to rice seedlings were analyzed. We compared and anylyzed the transcriptome changes of the bacteria Bacillus subtilis OKB105 in response to rice seedings for 2 h. Total RNA was extracted and Random priming cDNA synthesis, cDNA fragmentation and terminal labeling with biotinylated GeneChip DNA labeling reagent, and hybridization to the Affymetrix GeneChip Bacillus subtilis Genome Array.
Project description:Roots make the first contact with the soil environment and are the first responders of stress. These root behaviors are quantifiable and adaptive. The response of rice varieties in mechanical and salinity stress was measured in a novel experimental setup that mimics the soil environment. We analyzed the response of roots by means of SAC (Stress Adaptation Coefficient) in 28 rice varieties that include high-yield salt tolerant varieties as well as geographically isolated native rice varieties. cDNA microarray of IR64 root-tip shows about 6000 common transcripts to be differentially regulated among the two stresses and common pathways were identified. Overall, our study indicates that there is an important commonality in the molecular basis of salt and mechanical stress and presents an easy-to-perform early establishment stress screen for rice varieties.
Project description:We used GeneChip Rice Genome Array (Affymetrix, Santa Clara, CA, USA) to identify genes that were rapidly induced by N starvation (1 h) in rice roots. Transcriptomic analysis of rice roots revealed that the expression of 288 genes was differentially regulated (144 up, 144 down) by N starvation (1 h).
Project description:We used GeneChip Rice Genome Array (Affymetrix, Santa Clara, CA, USA) to identify genes that were rapidly induced by glutamine in rice roots. Transcriptomic analysis of rice roots revealed that the expression of at least 35 genes involved in metabolism, transport, signal transduction, and stress responses was rapidly induced by glutamine within 30 minutes.
Project description:We used GeneChip Rice Genome Array (Affymetrix, Santa Clara, CA, USA) to identify genes that were rapidly induced by NH4NO3 in rice roots. Transcriptomic analysis of rice roots revealed that the expression of at least 158 genes involved in metabolism, transport, signal transduction, and stress responses was rapidly induced by NH4NO3 within 30 minutes.
Project description:We used GeneChip Rice Genome Array (Affymetrix, Santa Clara, CA, USA) to identify genes that were rapidly induced by glutamate in rice roots. Transcriptomic analysis of rice roots revealed that the expression of at least 122 genes involved in metabolism, transport, signal transduction, defense, and stress responses was rapidly induced by glutamate within 30 minutes.