Project description:All cells and organisms exhibit stress-coping mechanisms to ensure survival. Cytoplasmic protein-RNA assemblies termed stress granules are increasingly recognized to promote cellular survival under stress. Thus, they might represent tumor vulnerabilities that are currently poorly explored. The translation-inhibitory eIF2α kinases are established as main drivers of stress granule assembly. Using a systems approach, we identify the translation enhancers PI3K and MAPK/p38 as pro-stress-granule-kinases. They act through the metabolic master regulator mammalian target of rapamycin complex 1 (mTORC1) to promote stress granule assembly. When highly active, PI3K is the main driver of stress granules; however, the impact of p38 becomes apparent as PI3K activity declines. PI3K and p38 thus act in a hierarchical manner to drive mTORC1 activity and stress granule assembly. Of note, this signaling hierarchy is also present in human breast cancer tissue. Importantly, only the recognition of the PI3K-p38 hierarchy under stress enabled the discovery of p38’s role in stress granule formation. In summary, we assign a new pro-survival function to the key oncogenic kinases PI3K and p38, as they hierarchically promote stress granule formation.
Project description:All cells and organisms exhibit stress-coping mechanisms toensure survival. Cytoplasmic protein-RNA assemblies termedstress granules are increasingly recognized to promote cellularsurvival under stress. Thus, they might represent tumor vul-nerabilities that are currently poorly explored. The translation-inhibitory eIF2αkinases are established as main drivers ofstress granule assembly. Using a systems approach, we identifythe translation enhancers PI3K and MAPK/p38 as pro-stress-granule-kinases. They act through the metabolic master regu-lator mammalian target of rapamycin complex 1 (mTORC1) topromote stress granule assembly. When highly active, PI3K is themain driver of stress granules; however, the impact of p38becomes apparent as PI3K activity declines. PI3K and p38 thusact in a hierarchical manner to drive mTORC1 activity and stressgranule assembly. Of note, this signaling hierarchy is also presentin human breast cancer tissue. Importantly, only the recognition ofthe PI3K-p38 hierarchy under stress enabled the discovery of p38’srole in stress granule formation. In summary, we assign a new pro-survival function to the key oncogenic kinases PI3K and p38, as theyhierarchically promote stress granule formation
2024-09-02 | BIOMD0000000907 | BioModels
Project description:Metatranscriptomes taken during aerobic granule formation
Project description:Transcriptome analysis of mRNA samples purified from developing cerebellar granule cells and ES cell-derived granule cells using translating ribosome affinity purification (TRAP) method. Although mechanisms underlying early steps in cerebellar development are known, evidence is lacking on genetic and epigenetic changes during the establishment of the synaptic circuitry. Using metagene analysis, we report pivotal changes in multiple reactomes of epigenetic pathway genes in cerebellar granule cells (GCs) during circuit formation. During this stage, Tet genes are up-regulated and vitamin C activation of Tet enzymes increases the levels of 5-hydroxymethylcytosine (5hmC) at exon start sites of up-regulated genes, notably axon guidance genes and ion channel genes. Knockdown of Tet1 and Tet3 by RNA interference in ex vivo cerebellar slice cultures inhibits dendritic arborization of developing GCs, a critical step in circuit formation. These findings demonstrate a role for Tet genes and chromatin remodeling genes in the formation of cerebellar circuitry. We analyzed gene expression of cerebellar granule cells and ES cell-derived granule cells using the Affymetrix mouse gene 1.0 ST platform. Array data was processed by metagene analysis which was developed by the Broad Institute.
Project description:We recently identified ISRIB as a potent inhibitor of the integrated stress response (ISR). ISRIB renders cells resistant to the effects of eIF2α phosphorylation and enhances long-term memory in rodents (10.7554/eLife.00498). Here we show by genome-wide in vivo ribosome profiling that translation of a restricted subset of mRNAs is induced upon ISR activation. ISRIB substantially reversed the translational effects elicited by phosphorylation of eIF2α and induced no major changes in translation or mRNA levels in unstressed cells. eIF2α phosphorylation-induced stress granule (SG) formation was blocked by ISRIB. Strikingly, ISRIB addition to stressed cells with pre-formed SGs induced their rapid disassembly, liberating mRNAs into the actively translating pool. Restoration of mRNA translation and modulation of SG dynamics may be an effective treatment of neurodegenerative diseases characterized by eIF2α phosphorylation, SG formation and cognitive loss. Ribosome profiling with paired RNA-seq
Project description:Energy metabolism and membraneless organelles have been implicated in human diseases including neurodegeneration. How energy deficiency regulates ribonucleoprotein particles such as stress granules (SGs) is still unclear. Here we identified a unique type of granules formed under energy deficiency and uncovered the mechanisms by which the dynamics of diverse stressinduced granules are regulated. Severe energy deficiency induced the rapid formation of energy deficiency-induced stress granule (eSGs), whereas moderate energy deficiency delayed the clearance of conventional SGs. The formation of eSGs or the clearance of SGs was regulated by the mTOR-4EBP1-eIF4E pathway or eIF4A1, involving eIF4F complex assembly or RNA condensation, respectively. In ALS patients’ neurons or cortical organoids, the eSG formation was enhanced, and conventional SG clearance was impaired. These results reveal a critical role for intracellular energy in the regulation of diverse granules and suggest that disruptions in energycontrolled granule dynamics may contribute to the pathogenesis of relevant diseases.
Project description:Epigenetic reader ZMYND11 noncanonical function restricts HNRNPA1-mediated stress granule formation and oncogenic activity, PPI of ZMYND11 in LNCap
Project description:Stress granule formation is a part of cellular homeostatic responses, with prototypical inducers being viral infections, heat shock and oxidative damage. Here we show that lysosomal damage is a previously unappreciated robust inducer of stress granule formation interlinked with mTOR inactivation during lysosomal damage. We find the two processes to be coordinated by a non-autophagy function of mammalian Atg8 proteins (mAtg8s). Stress granules were induced in response to biochemical damage and diverse lysosome damaging biological agents including SARS-CoV-2 ORF3a, Mycobacterium tuberculosis and protopathic tau. Proteomic analyses of purified lysosomes subjected to biochemical damage revealed recruitment to lysosomes of a network of stress granule proteins, including G3BP1 and NUFIP2. G3BP1 and NUFIP2 contributed to inactivation of mTOR during lysosomal damage via the Ragulator-RagA/B system. Lysosomal damage recruited a subset of mAtg8s commonly related to autophagy but also known to associate with other stressed or remodeling membranes. The GABARAP subset of mAtg8s interacted with G3BP1 and NUFIP2 and were required for NUFIP2 and G3BP1 recruitment to the damaged lysosomes. GABARAPs acted as a switch between the utilization of G3BP1 and NUFIP2 in stress granule formation vs. their role in mTOR inactivation. We furthermore found that mAtg8s lipidation, referred herein as Atg8ylation to distinguish it from its conventional implication in autophagy, but not the canonical autophagy factors ATG13, FIP200, and ATG9A, favored mTOR inactivation during lysosomal damage vs. the stress granule formation. Thus, cells utilize Atg8ylation as a response to membrane stress for specific outcomes beyond the process of autophagy, which include the coordinated stress granule formation and mTOR inactivation during lysosomal damage
Project description:Stress granule and inflammasome assembly determine contrasting fates of stressed cells. FAM69C is a brain-enriched kinase associated with neurodegenerative diseases, but its biological functions are still largely unknown. Here we show that FAM69C plays an important role in the regulation of stress responses through promoting stress granule assembly and suppressing inflammasome activation. In response to ATP, a common inflammasome activator, mouse primary microglia, and BV-2 cells form stress granules. FAM69C deficiency hastens inflammasome activation in mouse microglia, which is accompanied by inhibited stress granule assembly. FAM69C promotes the assembly of stress granules and halts protein translation under stress. Aged Fam69c knockout mice show increased neuroinflammation and ASC specks formation. We further find that FAM69C physically phosphorylates eIF2α and promotes stress granule assembly. Our data reveal that FAM69C promotes stress granule assembly under stress and suppresses inflammasome formation in microglia, suggesting that FAM69C may be a potential therapeutic target for neurodegenerative diseases.