Project description:Promoter rearrangement of the telomerase reverse transcriptase (TERT) gene juxtaposes the coding sequence to strong enhancer elements, leading to TERT overexpression and poor prognosis. TERT associated oncogenic signaling in neuroblastoma remains unclear. Gene set enrichment analysis of RNA-seq data from 498 neuroblastoma patients revealed a coordinated activation of oncogenic signaling pathways and differentially overexpressed gene signature in a subgroup of MycN non-amplified neuroblastomas with TERT overexpression. ChIP-seq analysis of human neuroblastoma cell line CLB-GA harboring TERT rearrangement uncovered genome-wide chromatin co-occupancy of Brd4 and H3K27Ac and robust enrichment of H3K36me3 in TERT and multiple TERT-associated genes. We demonstrated a critical regulatory role of Brd4 and cyclin-dependent kinases in the expression and chromatin activation. Inhibition of both with AZD5153 and dinaciclib proved most effective in tumor growth suppression of neuroblastoma cell lines, primary cells, and xenograft. Our study provides a therapeutic strategy utilizing epigenetic targeting of neuroblastoma with TERT overexpression.
Project description:The aim of this study is to determine the clinical relevance of telomerase activation versus ALT as biomarkers in pre-treatment neuroblastoma, and to assess the potential value of telomerase as a therapeutic target. Therefore, the genomic status of TERT and MYCN was assessed in 457 pretreatment neuroblastomas by fluorescence-in-situ-hybridization. ALT was examined in 273/457 tumors by detection of ALT-associated promyelocytic leukemia nuclear bodies, and TERT expression was determined by 4x44k microarrays in 223 of these. The presence of activated telomerase, i.e., TERT rearrangements, MYCN amplification, or high TERT expression without these alterations, was associated with poorest overall survival, and was an independent prognostic marker in multivariable analyses.
Project description:Using microcell-mediated chromosome transfer (MMCT) into the mouse melanoma cell line, B16F10, we have previously found that human chromosome 5 carries a gene, or genes, that can negatively regulate TERT expression. To identify the gene responsible for the regulation of TERT transcription, we performed cDNA microarray analysis using parental B16F10 cells, telomerase negative B16F10 microcell hybrids with a human chromosome 5 (B16F10MH5), and its revertant clones (MH5R) with reactivated telomerase. Here we report the identification of PITX1, whose restoration leads to the downregulation of mouse tert (mtert) transcription, as a TERT suppressor gene. Additionally, both human TERT (hTERT) and mouse TERT (mtert) promoter activity can be suppressed by PITX1. We showed that three and one binding sites, respectively, within the hTERT and mtert promoters that express a unique conserved region are responsible for the transcriptional activation of TERT. Furthermore, we showed that PITX1 binds to the TERT promoter both in vitro and in vivo. Thus, PITX1 suppresses TERT transcription through direct binding to the TERT promoter, which ultimately regulates telomerase activity. We transferred intact human chromosome 5 into mouse melanoma B16F10 cells by microcell fusion. The microcell hybrids (MH5) exhibited suppression of telomerase, we also obtained revertant clones (MH5R) in which telomerase is reactivated. To identify the differentially expressed genes on human chromosome 5, we performed expression microarray analysis using these two clones and parental B16F10 cells.
Project description:Whole genome sequencing detected structural rearrangements of TERT in 17/75 high stage neuroblastoma with 5 cases resulting from chromothripsis. Rearrangements were associated with increased TERT expression and targeted immediate up- and down-stream regions of TERT, placing in 7 cases a super-enhancer close to the breakpoints. TERT rearrangements (23%), ATRX deletions (11%) and MYCN amplifications (37%) identify three almost non-overlapping groups of high stage neuroblastoma, each associated with very poor prognosis
Project description:Using microcell-mediated chromosome transfer (MMCT) into the mouse melanoma cell line, B16F10, we have previously found that human chromosome 5 carries a gene, or genes, that can negatively regulate TERT expression. To identify the gene responsible for the regulation of TERT transcription, we performed cDNA microarray analysis using parental B16F10 cells, telomerase negative B16F10 microcell hybrids with a human chromosome 5 (B16F10MH5), and its revertant clones (MH5R) with reactivated telomerase. Here we report the identification of PITX1, whose restoration leads to the downregulation of mouse tert (mtert) transcription, as a TERT suppressor gene. Additionally, both human TERT (hTERT) and mouse TERT (mtert) promoter activity can be suppressed by PITX1. We showed that three and one binding sites, respectively, within the hTERT and mtert promoters that express a unique conserved region are responsible for the transcriptional activation of TERT. Furthermore, we showed that PITX1 binds to the TERT promoter both in vitro and in vivo. Thus, PITX1 suppresses TERT transcription through direct binding to the TERT promoter, which ultimately regulates telomerase activity.
Project description:Blocking telomerase is recognized as a key anti-cancer mechanism. Unlike in stem cells, levels of telomerase catalytic subunit TERT are limiting in reconstituting telomerase activity in somatic cells. However in some cancers, Tert is transcriptionally reactivated by mutations in its promoter. Given that Tert in stem cells is driven by WT Tert promoter, if we can selectively target Tert reactivation through mutant Tert promoters we can block telomerase activity specifically in cancer cells without toxicity in stem cells. Here we report the epigenetic regulation of Tert promoter comparing WT and mutant promoters. We showed that GABPA homodimerization through long-range interaction stabilizes Gabpa to drive Tert expression. Furthermore, BRD4 specifically activates the C250T mutant promoter via dual mechanism involving GABPA, thereby setting the stage for future therapeutics.
Project description:Neuroblastoma is a malignant pediatric tumor of the sympathetic nervous system1. Roughly half of these tumors regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavorable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive2-4. We have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n=39; low-risk, n=17) and discovered recurrent genomic rearrangements affecting a chromosomal region (5p15.22) proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumor type1,2,5. In an extended case series (n=217), TERT rearrangements defined a subgroup of high-risk tumors with particularly poor outcome. Despite the large diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumors, TERT expression was also elevated in MYCN-amplified tumors, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.22 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodeling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cells bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodeling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the center of transformation in a large fraction of these tumors.