Project description:Fruit ripening in Citrus is not well understood at the molecular level. Knowledge of the regulatory mechanism of citrus fruit ripening at the post-transcriptional level in particular is lacking. Here, we comparatively analyzed the miRNAs and their targeted genes in a spontaneous late-ripening mutant, ?Fengwan? sweet orange (MT) (Citrus sinensis L. Osbeck), and its wild-type counterpart ('Fengjie 72-1', WT). Using high-throughput sequencing of small RNAs and RNA degradome tags, we identified 107 known and 21 novel miRNAs, as well as 225 target genes. A total of 24 miRNAs (16 known miRNAs and 8 novel miRNAs) were shown to be differentially expressed between MT and WT. The expression pattern of several key miRNAs and their target genes during citrus fruit development and ripening stages was examined. Csi-miR156k, csi-miR159 and csi-miR166d suppressed specific transcription factors (GAMYBs, SPLs and ATHBs) that are supposed to be important regulators involved in citrus fruit development and ripening. In the present study, miRNA-mediated silencing of target genes was found under complicated and sensitive regulation in citrus fruit. The identification of miRNAs and their target genes provide new clues for future investigation of mechanisms that regulate citrus fruit ripening.
Project description:Citrus Huanglongbing (HLB, or greening) is one of the most severe diseases of citrus. Plant disease symptom development is considered to be the consequence of a number of molecular, cellular and physiological changes, and may also be associated with host defense responses. Understanding citrus host response to HLB may contribute to the development of new strategies to control this destructive disease. We performed microarray analysis to identify the differentially expressed genes in sweet orange in response to HLB infection using the Affymetrix GeneChip® citrus genome array.
Project description:We report the application of Illumina sequencing for high-throughput profiling of miRNA in citrus root responded to long-term boron toxicity. We find miR319 is involved in citrus adapation to long-term boron toxicity via targeting a MYB gene, Ciclev10000756m.g.v1.0, which is homologus with several MYBs that modulate lateral root development in Arabidopsis.
Project description:To excavate the underlying molecular regulation network that during citrus fruit development and ripening, we used RNA-seq to generate high-resolution profiles of global gene expression in four different fruit tissues at six development stages. Using weighted gene coexpression network analysis, we identified modules of coexpressed genes and hub genes of tissue-specific networks. In general, this study was aimed to uncover the new molecular insights into citrus fruit development and ripening, and to reveal the specific nonclimacteric characteristics of citrus fruit.
Project description:Huanglongbing (HLB) is a worldwide devastating disease of citrus. There are no effective control measures for this newly emerging but century-old disease. A powerful oligonucleotide microarray of high-density 16S rRNA genes, the PhyloChip microarray, has been developed and effectively used to study bacterial diversity, especially from environmental samples. In this article, we aim to decipher the bacterial microbiome in HLB-affected citrus versus non-infected citrus as well as in citrus plants treated with ampicillin and gentamicin using PhyloChip-based metagenomics. The antibiotic treatments were conducted on the randomized complete block design with three replicates. For each replicate, 15 scions were treated in each antibiotic treatment (Amp and Gm) and control (CK1 and CK2). HLB-affected budsticks were sampled from severely HLB-affected field rough lemons (cv. Lemon #76) at the USDA-ARS-USHRL farm in Fort Pierce, FL and tested positive for Las by real-time qPCR. They were soaked in the antibiotic treatments; ampicillin sodium at a concentration of 1.0 g/L (Amp, Sigma-Aldrich, St. Louis, MO) or gentamicin sulfate at a concentration of 100 mg/L (Gm, Sigma-Aldrich, St. Louis, MO) and water as the diseased control (CK1), overnight in a fume hood under ventilation and lighting. Las-free budsticks, which tested negative by qPCR from healthy rough lemons, were also soaked in water as the healthy control (CK2). The budsticks were grafted onto two-year-old healthy grapefruit (Citrus paradisi 'Duncan') rootstocks and covered using plastic tape for three weeks. To improve scion growth, new flush from the rootstocks was removed after grafting and then allowed to grow. All experimental plants were grown in an insect-proof greenhouse. The first leaf samples from scions (rough lemon) and rootstocks (grapefruit) for DNA extraction were taken four months after inoculation, and second samplings were taken at six month after inoculation. The leaves were washed in tap water and then rinsed three times with sterile water. The midribs of the leaves were excised, frozen in liquid nitrogen, and stored at -80M-BM-0C. The midribs of five leaves from each sample were pooled, and DNA was isolated for qPCR analysis for Las bacterium. DNA from the leaf midribs of scions for the PhyloChipT G3 analysis, which was extracted from all samples of the same treatment, was pooled in equal amounts and quantified by the PicoGreenM-BM-. method. The PhyloChipTM G3 analysis was conducted by Second Genome Inc. (San Francisco, CA).
Project description:To identify genes associated with citrus peel development and manifestation of peel disorders, we analyzed flavedo, albedo and juice sac tissues from five types of citrus fruit including, mandarin orange, navel orange, valencia orange, grapefruit and lemon.
Project description:The common edible mushroom Agaricus bisporus is a basidiomycete that thrives on decaying plant material in the forests and grasslands of North America and Europe. It is adapted to forest litter and contributes to global carbon recycling, degrading cellulose, hemicellulose and lignin in plant biomass to oligomers and monomers. A. bisporus is also an edible mushroom that is widely cultivated and economically important. However, relatively little is known about how A. bisporus grows in this controlled environment and utilizes its substrate. Using transcriptomics and proteomics, we showed that changes in plant biomass degradation by A. bisporus occur throughout its life cycle. Ligninolytic genes were highly expressed during the spawning stage day 16 and had low expression during all the other growth stages which could indicate that lignin is not modified after the spawning stage. Our results also revealed differences in gene expression involved in cellulose and hemicellulose degradation between the first and second flushes. This could partially explain the reduction in the number of mushrooms during the second flush. This study compares the gene expression of A. bisporus A15 at different stages of its life cycle using the controlled environment of indoor commercial cultivation. The samples were taken at the spawning stage, primordial stage, first flush, after first flush, second flush and after second flush, respectively
Project description:To identify genes associated with citrus peel development and manifestation of peel disorders, we analyzed flavedo, albedo and juice sac tissues from five types of citrus fruit including, mandarin orange, navel orange, valencia orange, grapefruit and lemon. Fruits of five different citrus cultivars. Mature, healthy fruits of five different citrus cultivars (M-bM-^@M-^\ValenciaM-bM-^@M-^] and M-bM-^@M-^\NavelM-bM-^@M-^] orange [Citrus sinensis], mandarin [Citrus reticulata], lemon [Citrus M-CM-^W limon], grapefruit [Citrus M-CM-^W paradisi]) were purchased from a food market located in Davis, CA, USA. For all five types of fruit, three tissues (flavedo, albedo, and juice sacs) were compared separately. Each of the three tissues from each of the five types of fruit were sampled in three biological replicates, for a total of 45 samples. Samples were prepared from a 1 cm-thick equatorial disc and four sections (N, S, E, and W) were cut. Each section of flavedo, albedo, and juice sac tissue was dissected. gene expression variation underlying quality trait, different genotypes
Project description:Citrus Huanglongbing (HLB, or greening) is one of the most severe diseases of citrus. Plant disease symptom development is considered to be the consequence of a number of molecular, cellular and physiological changes, and may also be associated with host defense responses. Understanding citrus host response to HLB may contribute to the development of new strategies to control this destructive disease. We performed microarray analysis to identify the differentially expressed genes in sweet orange in response to HLB infection using the Affymetrix GeneChipM-BM-. citrus genome array. Two-year-old seedlings of M-bM-^@M-^XMadam VinousM-bM-^@M-^Y sweet orange (Citrus sinensis L. Osbeck) were inoculated by grafting with bud sticks from HLB-diseased, PCR positive sweet orange plants. For mock-inoculated controls, the same types of plants were grafted with bud sticks from HLB-free, PCR negative sweet orange. At 7 months after inoculation, mature leaves were sampled from 3 individual HLB-diseased plants, and healthy leaves from 3 mock-inoculated plants as control. Total RNA was extracted from leaf samples and hybridized on Affymetrix microarrays.
Project description:Citrus disease resistance breeding has been advanced to introduce CTV resistance of trifoliate orange to citrus. Because the quality of the fruit of trifoliate ogate was low, backcross with citrus was necessary. In the case of citrus, it takes several years from flowering to obtaining next-generation seeds. Therefore, we generated transformants for the early flowering genes (citrus FLOWERING LOCUS T: CiFT) using CiFT co-expression vector construct and promoted generation. In Japan, it is difficult to plant transformants in the field. Therefore, it was decided to select null segregant lacking transgene from backcross progenies. In order to prove that the transgene has been completely removed, it is necessary to prove that no vector conract is present on the genome. Tthis matter was proved by CGH analysis.