Project description:Membrane-containing bacterial viruses are one of the most prevalent predators in aquatic environments. We have identified and thoroughly characterized a new type of membrane-containing bacteriophage, Jorvik, which infects the freshwater mixotrophic model bacterium Rhodobacter capsulatus. Here, we present raw LC-MS/MS data of partially purified virions of Jorvik propagated on R. capsulatus strain YW1.
Project description:Xanthomonas oryzae pv. oryzae (Xoo) is a rice pathogen causing bacterial blight, which outbreaks in most rice cultivating countries and reduces yield up to 50% due to no effective pesticide. Urgent responses of Xoo upon the initial contacts with rice at infection site are essential for pathogenesis. We studied the time-resolved gene expression of both transcriptome and proteome in the pathogenicity-activated Xoo cells with an in vitro assay system. Genes related to cell mobility, inorganic ion transport and effectors are early response genes to help Xoo cells invade into damaged rice leaf tissues, obtain rare cofactors, and evade rice immune responses. Although the time-resolved gene expression pattern of Xoo is conserved in both mRNA and protein, there are varied time gaps in genes between the expression peaks of mRNA and protein, which implies there is an additional translational selection step of specific mRNAs for rapid translation. The expression pattern of genes from a polycistronic mRNA in the same gene cluster is strictly conserved. The time-resolved gene expression study of Xoo in both transcriptome and proteome provides a valuable information about the pathogenic responses of Xoo at the initial stage of Xoo-rice interaction.
Project description:Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial blight disease, is one of the major threats to rice productivity. Yet, the molecular mechanism of rice-Xoo interaction is elusive. Here, we report comparative proteome profiles of Xoo susceptible (Dongjin) and resistant (Hwayeong) cultivars of rice in response to two-time points (3 and 6 days) of Xoo infection. Low-abundance proteins were enriched using a protamine sulfate (PS) precipitation method and isolated proteins were quantified by a label-free quantitative analysis, leading to the identification of 3846 protein groups. Of these, 1128 proteins were significantly changed between mock and Xoo infected plants of Dongjin and Hwayeong cultivars. Based on the abundance pattern and functions of the identified proteins, a total of 23 candidate proteins were shortlisted that potentially participate in plant defense against Xoo in the resistant cultivar. Of these candidate proteins, a mitochondrial arginase-1 showed Hwayeong specific abundance and was significantly accumulated following Xoo inoculation. Overexpression of arginase-1 in susceptible rice cultivar (Dongjin) resulted in enhanced tolerance against Xoo as compared to the wild-type (WT). In addition, expression analysis of defense-related genes encoding PR1, glucanase I, and chitinase II by qRT-PCR showed their enhanced expression in the overexpression lines as compared to WT. Mitochondrial localization of the selected arginase was further confirmed by fluorescent microscopy using GFP-tagged arginase. Taken together, our results uncover the proteome changes in the rice cultivars and highlight the functions of arginase in plant defense against Xoo.
Project description:Rice-Xanthomonas oryzae is an economically important pathosystem owing to the loss caused by bacterial blight disease. Understanding the moleulcar dynbamics that occur during rice-Xoo interaction is crucial for understanding disaease susceptible and resistance mechanisms. SM210, harbors the resistance alleles xa5, xa13, and Xa21 and is resistant against Xoo. Transcriptome analysis of Xoo-treated. SM210 and SM, its parent variety, indicated different pathways that are altered in these varieties after Xoo treatment.
Project description:Gene expression changes induced in Rice (Oryza sativa) leaves following treatment with any one of the following: wild type Xoo, lipopolysaccharide (LPS) and exopolysaccaride (EPS) deficient Xoo mutant; LPS proficient but EPS deficient Xoo mutant
Project description:we emphatically monitored the responsive changes of rice miRNAs at 0, 8, 24 hours across Xoo strain PXO86 infection in its compatible rice variety IR24 and incompatible variety IRBB5 by small RNA sequencing, and the genes targeted by miRNAs were also detected via degradome technology. These findings provide new insights into the complex roles of characteristic miRNAs and their targets in rice-Xoo interactions.
Project description:The plant cell wall degrading enzyme LipA (Lipase/Esterase A) is a Type II secretion system secreted protein of Xanthomonas oryzae pv. oryzae (Xoo; the casual of bacterial leaf blight of rice). LipA is an Xoo virulence factor. However, LipA is a double edged sword for Xoo as it induces rice defense responses such as programmed cell death/hypersensitive response like reaction (HR) and callose deposition. Prior treatment with LipA enhances resistance against subseqent Xoo infection. In order to understand the molecular events associated with Esterase (LipA) induced innate immune responsein rice , whole genome transcriptional profiling was performed using Affymetrix Rice GeneChips
Project description:Purpose: The goal of this study is to identify small non-conding RNAs which are involved in rice resistance to Xoo. Methods: Rice leaves were inoculated with the Xoo strain PXO61 at the four-leaf to five-leaf stage by the leaf-clipping method. Control rice plants were inoculated with water (mock inoculation). And then, total RNA was extracted to be sequenced using Illumina GAIIx. Results: Using an optimized data analysis workflow to count the expression level of small ncRNA, we found several differentially expressed small ncRNA which may be participated in the interaction between rice and Xoo. Conclusions: Small ncRNA have be found to function in a variety of biological processes. Our study here has showed that several candidate miRNA or siRNA may play a significant role in rice immunity.
Project description:We observed the expression profile of the total mRNA of wild-type Thermus thermophilus HB8 strain during infection of bacteriophage ϕYS40. Keywords: time course, bacteriophage, infection, wild type