Project description:Background: The recent emergence of a novel coronavirus in the Middle East (designated MERS-CoV) is a reminder of the zoonotic potential of coronaviruses and the severe disease these etiologic agents can cause in humans. Clinical features of Middle East respiratory syndrome (MERS) include severe acute pneumonia and renal failure that is highly reminiscent of severe acute respiratory syndrome (SARS) caused by SARS-CoV. The host response is a key component of highly pathogenic respiratory virus infection. Here, we computationally analyzed gene expression changes in a human airway epithelial cell line infected with two genetically distinct MERS-CoV strains obtained from human patients, MERS-CoV-EMC (designated EMC) and MERS-CoV-London (designated LoCoV). Results: Using topological techniques, such as persistence homology and filtered clustering, we characterized the host response system to the different MERS-CoVs, with LoCoV inducing early kinetic changes, between 3 and 12 hours post infection, compared to EMC. Robust transcriptional changes distinguished the two MERS-CoV strains predominantly at the late time points. Combining statistical analysis of infection and cytokine-stimulated treatment transcriptomics, we identified differential innate and pro-inflammatory responses between the two virus strains, including up-regulation of extracellular remodeling genes following LoCoV infection and differential pro-inflammatory responses between the two strains. Conclusions: These transcriptional differences may be the result of amino acid differences in viral proteins known to modulate innate immunity against MERS infection. Triplicate wells of Calu-3 2B4 cells were infected with Human Coronavirus EMC 2012 (HCoV-EMC) or time-matched mock infected. Cells were harvested at 0, 3, 7, 12, 18 and 24 hours post-infection (hpi), RNA extracted and transcriptomics analyzed by microarray.
Project description:The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been linked to a wide range of neurological symptoms. In this study, the impact of SARS-CoV-2 infection on neuropsychiatric disorders in mice was investigated. To elucidate the role of SARS-CoV-2 infection in behavioral changes, we utilized a highly virulent mouse-adapted SARS-CoV-2 strain (SARS2-N501YMA30) to infect young C57BL/6 mice.
Project description:The outbreak of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has led to an unparalleled global health crisis. While the majority of COVID-19 patients present with mild respiratory issues, a subset of patients still develop severe symptoms and life-threatening complications. Notably, abnormal coagulation and thrombosis are significant contributors to mortality in severe COVID-19 patients. Therefore, this study stimulated aortic endothelial cells with SARS-Cov-2 S protein and performed transcriptome sequencing analysis.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been identified as the cause of the Coronavirus disease 19 (COVID-19), which was initially reported in December 2019 in China and has since rapidly spread worldwide.
Since then, the COVID-19 pandemic has caused a detrimental effect of the national health care system, causing a drastic reduction of the screening programs for colorectal cancer and requiring the redistribution of the hospital resources from elective surgery to the care of patients with SARS-Cov_2 infection requiring admission.
Project description:Coronavirus disease 2019 (COVID-19) is a viral pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is predominantly defined by respiratory symptoms, but cardiac complications including arrhythmias, heart failure, and viral myocarditis are also prevalent. Although the systemic ischemic and inflammatory responses caused by COVID-19 can detrimentally affect cardiac function, the direct impact of SARS-CoV-2 infection on human cardiomyocytes is not well understood.
Project description:Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that can cause severe respiratory disease in humans. Identification of the host factors that are necessary for viral infection and virus-induced cell death is critical to our understanding of the viral life cycle and can potentially aid the development of new treatment options. Here, we report CRISPR screen results of both SARS-CoV and MERS-CoV infections in derivatives of the human hepatoma cell line Huh7. Our screens identified the known entry receptors ACE2 for SARS-CoV and DPP4 for MERS-CoV. Additionally, the SARS-CoV screen uncovered several components of the NF-κB signaling pathway (CARD10, BCL10, MALT1, MAP3K7, IKBKG), while the MERS-CoV screen revealed the polypyrimidine tract-binding protein PTBP1, the ER scramblase TMEM41B, furin protease and several transcriptional and chromatin regulators as candidate factors for viral replication and/or virus-induced cell death. Together, we present several known and unknown coronavirus host factors that are of interest for further investigation.
Project description:Obesity, characterized by chronic low-grade inflammation of the adipose tissue, is associated with adverse coronavirus disease 2019 (COVID-19) outcomes, yet the underlying mechanism is unknown. To explore whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of adipose tissue contributes to pathogenesis, we evaluated COVID-19 autopsy cases and deeply profiled the response of adipose tissue to SARS-CoV-2 infection in vitro.
Project description:Coronavirus disease 2019 (COVID-19) is the latest respiratory pandemic resulting from zoonotic transmission of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). Severe symptoms include viral pneumonia secondary to infection and inflammation of the lower respiratory tract, in some cases causing death. We developed primary human lung epithelial 5 infection models to understand responses of proximal and distal lung epithelium to SARS-CoV-2 infection. Differentiated air-liquid interface cultures of proximal airway epithelium and 3D organoid cultures of alveolar epithelium were readily infected by SARS-CoV-2 leading to an epithelial cell-autonomous proinflammatory response. We validated the efficacy of selected candidate COVID-19 drugs confirming that Remdesivir strongly suppressed viral 10 infection/replication. We provide a relevant platform for studying COVID-19 pathobiology and for rapid drug screening against SARS-CoV-2 and future emergent respiratory pathogens.
Project description:Coronavirus disease 2019 (COVID-19) is the latest respiratory pandemic resulting from zoonotic transmission of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). Severe symptoms include viral pneumonia secondary to infection and inflammation of the lower respiratory tract, in some cases causing death. We developed primary human lung epithelial infection models to understand responses of proximal and distal lung epithelium to SARS-CoV-2 infection. Differentiated air-liquid interface cultures of proximal airway epithelium and 3D organoid cultures of alveolar epithelium were readily infected by SARS-CoV-2 leading to an epithelial cell-autonomous proinflammatory response. We validated the efficacy of selected candidate COVID-19 drugs confirming that Remdesivir strongly suppressed viral infection/replication. We provide a relevant platform for studying COVID-19 pathobiology and for rapid drug screening against SARS-CoV-2 and future emergent respiratory pathogens.
Project description:All coronaviruses known to have recently emerged as human pathogens probably originated in bats1. Here we use a single experimental platform based on immunodeficient mice implanted with human lung tissue (hereafter, human lung-only mice (LoM)) to demonstrate the efficient in vivo replication of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as two endogenous SARS-like bat coronaviruses that show potential for emergence as human pathogens. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host. Our results indicate that bats contain endogenous coronaviruses that are capable of direct transmission to humans. Our detailed analysis of in vivo infection with SARS-CoV-2 in human lung tissue from LoM showed a predominant infection of human lung epithelial cells, including type-2 pneumocytes that are present in alveoli and ciliated airway cells. Acute infection with SARS-CoV-2 was highly cytopathic and induced a robust and sustained type-I interferon and inflammatory cytokine and chemokine response. Finally, we evaluated a therapeutic and pre-exposure prophylaxis strategy for SARS-CoV-2 infection. Our results show that therapeutic and prophylactic administration of EIDD-2801?an oral broad-spectrum antiviral agent that is currently in phase II/III clinical trials?markedly inhibited SARS-CoV-2 replication in vivo, and thus has considerable potential for the prevention and treatment of COVID-19.