Project description:We report the complete and annotated genome sequence of the plant-pathogenic enterobacterium Pectobacterium sp. strain SCC3193, a model strain isolated from potato in Finland. The Pectobacterium sp. SCC3193 genome consists of a 5,164,411-bp [corrected] chromosome, with no plasmids.
Project description:Bacterial soft rot is one of the most destructive diseases of taro (Colocasia esculenta) worldwide. In recent years, frequent outbreaks of soft rot disease have seriously affected taro production and became a major constraint to the development of taro planting in China. However, little is known about the causal agents of this disease, and the only reported pathogens are two Dickeya species and P. carotovorum. In this study, we report taro soft rot caused by two novel Pectobacterium strains, LJ1 and LJ2, isolated from taro corms in Ruyuan County, Shaoguan City, Guangdong Province, China. We showed that LJ1 and LJ2 fulfill Koch's postulates for taro soft rot. The two pathogens can infect taro both individually and simultaneously, and neither synergistic nor antagonistic interaction was observed between the two pathogens. Genome sequencing of the two strains indicated that LJ1 represents a novel species of the genus Pectobacterium, for which the name "Pectobacterium colocasium sp. nov." is proposed, while LJ2 belongs to Pectobacterium aroidearum. Pan-genome analysis revealed multiple pathogenicity-related differences between LJ1, LJ2, and other Pectobacterium species, including unique virulence factors, variation in the copy number and organization of Type III, IV, and VI secretion systems, and differential production of plant cell wall degrading enzymes. This study identifies two new soft rot Pectobacteriaceae (SRP) pathogens causing taro soft rot in China, reports a new case of co-infection of plant pathogens, and provides valuable resources for further investigation of the pathogenic mechanisms of SRP.
Project description:Quorum sensing (QS) is a cell density-dependent mechanism that regulates the expression of specific genes in microbial cells. Quorum quenching (QQ) is a promising strategy for attenuating pathogenicity by interfering with the QS system of pathogens. N-Acyl-homoserine lactones (AHLs) act as signaling molecules in many Gram-negative bacterial pathogens and have received wide attention. In this study, a novel, efficient AHL-degrading bacterium, Acinetobacter sp. strain XN-10, was isolated from agricultural contaminated soil and evaluated for its degradation efficiency and potential use against QS-mediated pathogens. Strain XN-10 could effectively degrade N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), N-hexanoyl-L-homoserine lactone (C6HSL), N-(3-oxododecanoyl)-L-homoserine lactone (3OC12HSL), and N-(3-oxooctanoyl)-L-homoserine lactone (3OC8HSL), which all belong to the AHL family. Analysis of AHL metabolic products by gas chromatography-mass spectrometry (GC-MS) led to the identification of N-cyclohexyl-propanamide, and pentanoic acid, 4-methyl, methyl ester as the main intermediate metabolites, revealing that AHL could be degraded by hydrolysis and dehydroxylation. All intermediates were transitory and faded away without any non-cleavable metabolites at the end of the experiment. Furthermore, strain XN-10 significantly attenuated the pathogenicity of Pectobacterium carotovorum subsp. carotovorum (Pcc) to suppress tissue maceration in carrots, potatoes, and Chinese cabbage. Taken together, our results shed light on the QQ mechanism of a novel AHL-degrading bacterial isolate, and they provide useful information which show potential for biocontrol of infectious diseases caused by AHL-dependent bacterial pathogens.
Project description:Pectobacterium are Gram-negative rods of the family Pectobacteriaceae. They are the causative agent of soft rot diseases of crops and ornamental plants. However, their virulence mechanisms are not yet fully elucidated. Membrane vesicles (MVs) are universally released by bacteria and are be-lieved to play an important role in pathogenicity, and survival of bacteria in the environment. Our study investigates the role of MVs in the virulence of Pectobacterium. The results indicate that the morphology and yields of MVs depend on medium composition. In polygalacturonic acid (PGA) supplemented media, Pectobacterium produce MVs of a larger size (100-300 nm) apart of vesicles below 100 nm. Proteomic analyses revealed the presence of pectate degrading enzymes in MVs. The pectate plate test and enzymatic assay proved that those enzymes are active and able to de-grade pectates. What is more, pathogenicity test indicated that MVs derived from Pectobacterium were able to induce maceration of Zantedeschia sp. leaves. We also show that MVs of β-lactamase producing strains were able to suppress ampicillin activity and permit the growth of susceptible bacteria. Those findings indicate that MVs of Pectobacterium play an important role in host-pathogen interactions and niche competition with other bacteria. Our research also sheds some light on the mechanism of MVs production. We demonstrate that Pectobacterium strains, which overexpress the green fluorescence protein (GFP), produce more MVs than wild type strains. Moreover, proteomic analysis revealed that GFP was present in MVs. Therefore, we demonstrate that protein sequestration into MVs is not limited strictly to periplasmic proteins and is a common occurrence. Our research highlights the importance of MVs production as a mechanism of cargo delivery in Pectobacterium and an alternative secretion system.