Project description:Plant roots are the primary site of perception and injury for saline-alkaline stress. The current knowledge of the saline-alkaline stress transcriptome is most focused on salt (NaCl) stress. Only a little alkaline (NaHCO3) stress transcriptome is limited to one time point after stress. Time-course analysis and comparative investigation on roots in the alkaline stress condition are needed to understand the gene response networks that are subject to alkaline tolerance. We used microarrays to detail the global programme of gene expression underlying NaHCO3 treatment and identified distinct classes of regulated genes during this process.
Project description:Aquatic microbial communities contain a vast amount of genetic diversity and we have much to learn about how this manifests to functional diversity. Existing long-term time series data includes 16S tags, metagenomes, single amplified genomes (SAGs), and genomes from metagenomes (GFMs). Information about functional diversity and metabolic capabilities is often unavailable. The study sites include three lakes that are the subject of intense study through the North Temperate Lakes Long Term Ecological Research site: Sparkling Lake (oligotrophic), Lake Mendota (eutrophic), and Trout Bog Lake (dystrophic).
The work (proposal:https://doi.org/10.46936/10.25585/60000947) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231.
Project description:We established simple synthetic microbial communities in a microcosm model system to determine the mechanisms that underlay cross-feeding in microbial methane-consuming communities. Co-occurring strains from Lake Washington sediment were used that are involved in methane consumption, a methanotroph and two non-methanotrophic methylotrophs.
2016-12-26 | GSE85736 | GEO
Project description:soil microbial community (various natural saline-alkaline soils)