Project description:Transcriptional profiling of macrophages derived from immune-selected (phagocytosis, complement activity in the alternative pathway, and antibody response after vaccination with swine erysipelas) in comparison with those from normal pigs
Project description:To gain insight into the role of testosterone in modulating hepatic fat accumulation, we collected liver tissues from high fat diet-fed intact male pigs, castrated male pigs, and castrated male pigs with testosterone replacement. RNA-Seq was employed to profile hepatic gene expression in pigs with different testosterone levels.
Project description:Microarray analysis of gene expression in 2-cell embryos obtained from developmentally competent MII oocytes or developmentally incompetent MII (NSN) oocytes. In this study we have compared the expression profile of 2-cell embryos obtained after following in vitro fertilisation of developmentally competent (control) or incompetent (NSN) MII oocytes with the aim of identifying the gene expression networks that operate at this specific stage of development.
Project description:To gain insight into the role of testosterone in modulating hepatic fat accumulation, we collected liver tissues from high fat diet-fed intact male pigs, castrated male pigs, and castrated male pigs with testosterone replacement. RNA-Seq was employed to profile hepatic gene expression in pigs with different testosterone levels. Liver mRNA profiles of intact male pigs fed a HFC diet, castrated male pigs fed a HFC diet, and castrated male pigs treated with testosterone fed a HFC diet were generated by deep sequencing, using Illumina HiSeq 2000.
Project description:Purpose: Obesity and dyslipidemia are associated with increased risk of renal disease.Testosterone deficiency aggravated high-fat diet-induced obesity and hypercholeterolemia. However,whether testosterone deficiency or testosterone deficiency-induced dyslipidemia aggravate the progression of renal disease is not clear. To gain insight into the role of testosterone in modulating renal lipid metabolism, we profiled renal gene expression by RNA-Seq in HFC-fed intact male pigs (IM), castrated male pigs (CM), and castrated male pigs with testosterone replacement (CMT). Methods: Sexually mature male miniature pigs were either surgical castrated or sham-operated, and castrated with testosterone replacement. We administrated to pigs a high-fat and high-cholesterol (HFC) diet for twelve weeks. RNA-Seq was employed to profile renal gene expression in pigs with different testosterone levels. Conclusions: This study demonstrated that testosterone deficiency aggravated renal lipid accumulation in pigs fed an HFC diet and that these effects could be reversed by testosterone replacement therapy. Impaired metabolic processes, bile acid secretion,estrogen signaling pathway and enhanced triglyceride synthesis may contribute to the increased renal lipid accumulation induced by testosterone deficiency and an HFC diet.
Project description:Intramuscular (i.m.) fat content influencing consumerâs acceptability of pork is considered as a limiting factor for meat quality. To gain insight into the biological basis of individual variability in i.m. fat content, both gene expression profiling and proteomic investigation were associated in pig longissimus muscle (LM). Keywords: intramuscular fat, gene expression, pigs, proteomics, microarray, pork meat Animals were sampled from a population of 1,000 pigs generated as an F2 intercross between two production sire lines: FH016 (Pietrain type, France Hybrides SA, St Jean de Braye, France) and FH019 (Synthetic line, from Duroc, Hampshire and Large White founders, France Hybrides SA, St Jean de Braye, France).
Project description:Intramuscular (i.m.) fat content influencing consumer’s acceptability of pork is considered as a limiting factor for meat quality. To gain insight into the biological basis of individual variability in i.m. fat content, both gene expression profiling and proteomic investigation were associated in pig longissimus muscle (LM). Keywords: intramuscular fat, gene expression, pigs, proteomics, microarray, pork meat