Project description:Biotin labelled miR-206 mimics ('06") and miR-Control mimics ("NC") were used to indentify putative miRNA transcript targets in FAPs form skeletal muscle
Project description:Cryptochromes were identified in plants and animals where they function as either photoreceptors or circadian clock components. In the filamentous fungus Neurospora, the biological function of cryptochrome has not yet been explored. Here, we demonstrate that Neurospora crassa cryptochrome (Nc cry) is a DASH-type of cryptochrome, capable of binding FAD and MTHF, whose transcript and protein levels are both strongly induced by blue light in a wc-1 dependent manner. Although the Nc cry transcript is circadian-regulated and antiphasic to frq, knockout strains of Nc cry appears to have a normal clock phenotype. Whole genome microarray and RT-QPCR analysis confirm that Nc cry is not involved in the signal transduction of either early or late light responses and seems to have no transcriptional regulatory activity under our laboratory conditions. Our study concludes that the only cryptochrome in Neurospora crassa is dispensable for the well-characterized blue light sensing cascade and is not part of the circadian clock system. Keywords: light response
Project description:Recent advance of RNA-seq technology enabled us to profile the diverse variations of RNA transcripts precisely, including the variants from alternative splicing as well as non-coding transcripts. Here, by performing transcriptome profiling including coding and noncoding transcripts, we identify four molecular subtypes of hepatitis B-related hepatocellular carcinoma (HCC) patients that are characterized by enriched expression of the RNA biotypes of noncoding (NC) and immune-related transcripts (IM) (i.e., IM+NC+, IM-NC+, IM+NC-, IM-NC-). The subtype IM+NC+ shows better prognostic outcome, while the subtype IM+NC- shows the worst prognostic outcome, respectively. Further interrogation of the subtypes identifies long noncoding transcripts (i.e., LINC00844, C3P1, and TRPG1-AS1) as well as an alternatively spliced event of USO1 that play pivotal roles in HCC progression. In addition, we report an oncogenic fusion transcript SLC39A14-PIWIL2 that promotes an aggressive phenotype of HCC. Our comprehensive and systematic analysis of HCC transcriptome identify RNA biotype-based molecular classification, revealing novel driver transcriptome variants that can be potential biomarkers and/or therapeutic targets for precision medicine.
Project description:Cryptochromes were identified in plants and animals where they function as either photoreceptors or circadian clock components. In the filamentous fungus Neurospora, the biological function of cryptochrome has not yet been explored. Here, we demonstrate that Neurospora crassa cryptochrome (Nc cry) is a DASH-type of cryptochrome, capable of binding FAD and MTHF, whose transcript and protein levels are both strongly induced by blue light in a wc-1 dependent manner. Although the Nc cry transcript is circadian-regulated and antiphasic to frq, knockout strains of Nc cry appears to have a normal clock phenotype. Whole genome microarray and RT-QPCR analysis confirm that Nc cry is not involved in the signal transduction of either early or late light responses and seems to have no transcriptional regulatory activity under our laboratory conditions. Our study concludes that the only cryptochrome in Neurospora crassa is dispensable for the well-characterized blue light sensing cascade and is not part of the circadian clock system. Keywords: light response Two-color microarray. Alexa Fluor 555 was consistently used to label cDNA synthesized from reference RNA, which is a mixture containing equal amounts of RNA samples harvested from different circadian time points and light treatment durations. The same batch of pooled RNA was used as a reference for each array experiment. Alexa Fluor 647 was used exclusively to label cDNA representing sample RNA.
Project description:Precise control of developmental processes is encoded in the genome in the form of gene regulatory networks (GRNs). Such multi-factorial systems are difficult to decode in vertebrates owing to their complex gene hierarchies and transient dynamic molecular interactions. Here we present a genome-wide in vivo reconstruction of the GRN underlying development of neural crest (NC), an emblematic embryonic multipotent cell population. By coupling NC-specific epigenomic and single-cell transcriptome profiling with genome/epigenome engineering in vivo, we identify multiple regulatory layers governing NC ontogeny, including NC-specific enhancers and super-enhancers, novel trans-factors and cis-signatures. Assembling the NC regulome has allowed the comprehensive reverse engineering of the NC-GRN at unprecedented resolution. Furthermore, identification and dissection of divergent upstream combinatorial regulatory codes has afforded new insights into opposing gene circuits t hat define canonical and neural NC fates. Our integrated approach, allowing dissection of cell-type-specific regulatory circuits in vivo, has broad implications for GRN discovery and investigation.
Project description:Precise control of developmental processes is encoded in the genome in the form of gene regulatory networks (GRNs). Such multi-factorial systems are difficult to decode in vertebrates owing to their complex gene hierarchies and transient dynamic molecular interactions. Here we present a genome-wide in vivo reconstruction of the GRN underlying development of neural crest (NC), an emblematic embryonic multipotent cell population. By coupling NC-specific epigenomic and single-cell transcriptome profiling with genome/epigenome engineering in vivo, we identify multiple regulatory layers governing NC ontogeny, including NC-specific enhancers and super-enhancers, novel trans-factors and cis-signatures. Assembling the NC regulome has allowed the comprehensive reverse engineering of the NC-GRN at unprecedented resolution. Furthermore, identification and dissection of divergent upstream combinatorial regulatory codes has afforded new insights into opposing gene circuits t hat define canonical and neural NC fates. Our integrated approach, allowing dissection of cell-type-specific regulatory circuits in vivo, has broad implications for GRN discovery and investigation.
Project description:Precise control of developmental processes is encoded in the genome in the form of gene regulatory networks (GRNs). Such multi-factorial systems are difficult to decode in vertebrates owing to their complex gene hierarchies and transient dynamic molecular interactions. Here we present a genome-wide in vivo reconstruction of the GRN underlying development of neural crest (NC), an emblematic embryonic multipotent cell population. By coupling NC-specific epigenomic and single-cell transcriptome profiling with genome/epigenome engineering in vivo, we identify multiple regulatory layers governing NC ontogeny, including NC-specific enhancers and super-enhancers, novel trans-factors and cis-signatures. Assembling the NC regulome has allowed the comprehensive reverse engineering of the NC-GRN at unprecedented resolution. Furthermore, identification and dissection of divergent upstream combinatorial regulatory codes has afforded new insights into opposing gene circuits t hat define canonical and neural NC fates. Our integrated approach, allowing dissection of cell-type-specific regulatory circuits in vivo, has broad implications for GRN discovery and investigation.
Project description:NUT carcinoma (NC) is an aggressive cancer with no effective treatment. About 70% of NUT carcinoma is associated with chromosome translocation events that lead to the formation of a BRD4::NUTM1 fusion gene. Because the BRD4::NUTM1 gene is unequivocally cytotoxic when ectopically expressed in cell lines, questions remain on whether the fusion gene can initiate NC. Here, we report the first genetically engineered mouse model (GEMM) for NUT carcinoma that recapitulates the t(15;19) chromosome translocation in mice. We demonstrated that the mouse t(2;17) syntenic chromosome translocation, forming the Brd4::Nutm1 fusion gene, could induce aggressive carcinomas in mice. The tumors present histopathological and molecular features similar to human NC, with an enrichment of undifferentiated cells. Similar to the reports of human NC incidence, Brd4::Nutm1 can induce NC from a broad range of tissues with a strong phenotypical variability. The consistent induction of poorly differentiated carcinoma demonstrated a strong reprogramming activity of BRD4::NUTM1. The new mouse model provided a critical preclinical model for NC that will lead to better understanding and therapy development for NC.
Project description:In the current study, to figure out the regulation pattern of TfR1, we knocked down TFRC expression level by shRNA in HeLa cells. RNA-sequencing (RNA-seq) was used to analyze the global transcript level and alternative splicing (AS) on knockdown-treated (KD) and normal control (NC) cell samples. 629 differentially expressed genes (DEGs) were identified between OE and NC, and Gene ontology (GO) and KEGG analysis for DEGs were carried out. It was found that multiple DEGs were involved in O-glycan processing, protein modification, response to hypoxia and ATP catabolic process, indicating the down-regulated expression of TfR1 extensively disturbed cell physiology.
Project description:The “nonclassic” apparent mineralocorticoid excess (NC-AME) has been identified in approximately 7% of general population. Our aim was to identify miRNAs within urinary exosomes associated to the NC-AME phenotype. A total of 18 urine samples (9 control and 9 NC-AME) derived from adult and children subjects were analyzed using small RNA sequencing.