Project description:Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising platform for cardiac studies in vitro, and possibly for tissue repair in humans. However, hiPSC-CM cells tend to retain morphology, metabolism, patterns of gene expression, and electrophysiology similar to that of embryonic cardiomyocytes. We grew hiPSC-CM in patterned islands of different sizes and shapes, and measured the effect of island geometry on action potential waveform and calcium dynamics using optical recordings of voltage and calcium from 970 islands of different sizes. hiPSC-CM in larger islands showed electrical and calcium dynamics indicative of greater functional maturity. We then compared transcriptional signatures of the small and large islands against a developmental time course of cardiac differentiation. Although island size had little effect on expression of most genes whose levels differed between hiPSC-CM and adult primary CM, we identified a subset of genes for which island size drove the majority (58%) of the changes associated with functional maturation. Finally, we patterned hiPSC-CM on islands with a variety of shapes to probe the relative contributions of soluble factors, electrical coupling, and direct cell-cell contacts to the functional maturation. Collectively, our data show that optical electrophysiology is a powerful tool for assaying hiPSC-CM maturation, and that island size powerfully drives activation of a subset of genes involved in cardiac maturation.
Project description:Background: Island populations repeatedly evolve extreme body sizes, but the genomic basis of this morphological pattern remains largely unknown. To understand how organisms on islands evolve gigantism, we compared genome-wide patterns of gene expression in Gough Island mice, the largest wild house mice in the world, and mice from the WSB/EiJ wild-derived inbred strain. In a highly replicated experiment, we used RNASeq to quantify differences in gene expression in three key metabolic organs: gonadal adipose depot, hypothalamus, and liver. Results: We discovered pervasive evidence of transcriptional evolution, with 20% or more of differentially regulated transcripts in each organ exhibiting expression fold changes of at least 2X. By considering differential expression jointly with the genomic positions of quantitative trait loci for body size and single nucleotide differences located within established tissue-specific regulatory elements, we nominated 66 candidate genes for extreme size evolution, including Irs1 and Lrp1. Patterns of differential expression across three developmental time points in the liver revealed that Arid5b potentially regulates tens of co-regulated gene groups. Functional enrichment analyses on thousands of differentially expressed genes pointed to cell cycling, mitochondrial function, signaling pathways, immune reactivity, and nutrient metabolism as potential causes of weight accumulation in Gough Island mice. Conclusion: Collectively, our results suggest that extensive regulatory evolution in metabolic organs contributed to the rapid evolution of gigantism during the short time house mice have inhabited Gough Island.
Project description:When evolution leads to differences in body size, organs generally scale along. A well-known example of the tight relationship between organ and body size is the scaling of mammalian molar teeth. To investigate how teeth scale during development and evolution, we compared mouse and rat molar development from initiation through final size. Whereas the linear dimensions of the rat first lower molar are twice that of the mouse molar, their shapes are largely the same. We found that scaling of the molars starts early, and that the rat molar is patterned equally as fast but in a larger size than the mouse molar. Using transcriptomics, we discovered that a known regulator of body size, insulin-like growth factor 1 (Igf1), is more highly expressed in the rat molars compared to the mouse molars. Ex vivo and in vivo mouse models demonstrated that modulation of the IGF pathway reproduces several aspects of the observed scaling process. Furthermore, analysis of IGF1-treated mouse molars and computational modeling indicate that IGF signalling scales teeth by simultaneously inhibiting the cusp patterning programme and by enhancing growth, thereby providing a relatively simple mechanism for scaling teeth during development and evolution. Finally, comparative data from shrews to elephants suggest that this scaling of patterning mechanism regulates the minimum tooth size possible, as well as the patterning potential of large teeth.