Project description:In this study, we describe the isolation and identification of Streptomyces isolates collected from traditional medicinal plants’ rhizosphere during a campaign in Hamedan Province, Iran. Traditional medicinal plants represent a rich and unique source for the isolation of Streptomyces and new antimicrobial compounds. This strain was isolated from the rhizosphere of Helichrysum rubicundum
Project description:M. purpureus YY-1 is widely used in food colorant production in China. In our previous study, the whole-genome information of YY-1 was clearly illustrated, which provided useful hints for evolution esearch and industrial applications. However, the presence of citrinin, which has nephrotoxic, hepatotoxic, and carcinogenic activities, attracts people′s attention to the safety of Monascus products. In order to reduce the harm of citrinin in Monascus related products, in this study, a random mutant of M. purpureus YY-1, with scarce citrinin production (designated as winter) was obtained. To analyze the biosynthesis and regulation mechanism of pigment and citrinin, transcriptomic analysis of M. purpureus YY-1 and winter was performed. Comparative transcriptomic analysis reveals pksCT, the essential gene for citrinin synthesis, showed low expression level in M. purpureus YY-1 and winter, which suggested there might be isoenzymes in M. purpureus YY-1 that were responsible for the citrinin synthesis during evolution. In addition, the expression change of transcription factors may also influence the regulatory network of citrinin synthesis pathway of in M. purpureus. Moreover, the yields of pigments produced by the winter mutant were significantly increased. Repressing central carbon metabolism and improving the acetyl-CoA pool can contribute to the high yield of pigments, and enhanced NADPH regeneration also lead the metabolic flux to pigments in M. purpureus. Investigations on biosynthesis and regulation of citrinin and pigment production in M purpureus will enhance our knowledge of the mechanisms in fungal secondary metabolite biosynthesis.
Project description:To identify unique gene expression in cAMP supplemented Streptomyces coelicolor M1146 strain. The genes with different gene expression might be key genes to understand the effects of cAMP supplementation on the transcriptome of Streptomyces coelicolor M1146.
Project description:To identify unique gene expression in cAMP supplemented Streptomyces coelicolor M145 strain. The genes with different gene expression might be key genes to understand the effects of cAMP supplementation on the transcriptome of Streptomyces coelicolor M145.
Project description:This study compared the genome of Streptomyces rimosus rimosus against that of Streptomyces coelicolor. It also compared 4 strains with changes in oxytetracycline production and derived from G7, the type strain, against G7. Keywords: Comparative genomic hybridization
Project description:Bacterial genomic plasticity and instability carry multiple functional genetic information in Streptomyces secondary metabolism. Our previously publication has reported an effective industrial Streptomyces strain, with a unique phenotype of the high clavulanic acid yield. The complete genome of strain F163-1 harboring a 136.9-kb giant region of plasticity (RGP) was sequenced. The chromosome and plasmid are densely packed by an exceptionally huge variety of potential secondary metabolic gene clusters, excluding production of putative antibiotics. Intriguingly, architecture and size differences of plasmid pSCL4 between F613-1 and ATCC 27064 suggest the pSCL4 plasmid evolving from pSCL4-like and pSCL2-like extrachromosomal replicons, in addition to the previously proposed ATCC 27064 mega-plasmid formation hypothesis through recombination between the smaller F613-1 pSCL4 plasmid arm regions and the linear chromosome. Comparative genomics systemically investigate secondary metabolism capacitates in this study indicates that frequent exchange of genetic materials between Streptomyces replicons may shape remarkable diversities of secondary metabolite repertoires. Consequently, the F613-1 strain seems to have evolved its specific genomic architectures and genetic patterns to meet the requirement in subsequent industrial processes.