Project description:H3K27me3 statuses were analyzed in normal mouse colonic epithelial cells and in those exposed to DSS-induced colitis, and aberrant changes of H3K27me3 by DSS-induced colitis were identified.
Project description:Colonic gene expression profiles of mice with DSS-induced colitis treated with apple peel polyphenolic extract Four-condition experiment: control, DSS-induced colitis, and mice treated with DAPP (two different doses (200 and 400 mg/kg/day) before or during induction and development of DSS-induced colitis.
Project description:Temporal genome profiling of DSS colitis The DSS induced mouse colitis model is often used to emulate Ulcerative Colitis (UC) in order understand pathophysiological mechanism of inflammatory bowel disease (IBD). Given the progressive nature of IBD, colon tissue gene expression changes during the evolution of disease, and knowing the changes in gene expression profiles could indentify potential diagnostic markers or additional therapeutic targets for colitis. Therefore, we performed temporal genome expression profiling analysis using the Affymetrix genome wide microarray system to identify broad scale changes in gene expression associated with the development of colitis. Keywords: Expression time course of mouse colon tissue induced by 3% DSS. C57BL/6J mice were given 3% DSS in the drinking water and tissues from individual cohorts were collected at days 0, 2, 4 and 6. Total RNA were extracted from the colon tissue and detected by Affymerix GeneChip Mouse Genome 430 2.0 Array.
Project description:We identified that GSDMD protected against DDS-induced colitis, and GSDMD deficiency in macrophages promoted the development of DSS-induced colitis.The purpose of this experiment was to identify how GSDMD protected against DSS-induced colitis.
Project description:We identified that DRD5 protected against DDS-induced colitis, and DRD5 deficiency in macrophages promoted the development of DSS-induced colitis.The purpose of this experiment was to identify how DRD5 protected against DSS-induced colitis.
Project description:Adamts12-deficient mice undergo more severe colitis than WT mice after induction with DSS. We used microarrays to determine the gene expression differences between Adamts12-deficient and WT mice during ulcerative colitis induced with DSS (dextran sodium sulfate) Fragments of distal colon from DSS-treated (2% DSS during 7 days and 1 day of recovery) and untreated Adamts12-deficient and WT mice were obtained for RNA extraction and hybridiztion with Affymetrix microarrays
Project description:Experimental colitis was induced in mice by the administration of 1.5% (w/v) Dextran sulfate sodium salt (DSS, colitis grade, 36-50kDa, MP Biomedicals) in the drinking water for 7 days followed by normal drinking water w/o DSS. Distal colons were collected two days later.
Project description:Experimental colitis was induced in mice by the administration of 2% (w/v) Dextran sulfate sodium salt (DSS, colitis grade, 36-50kDa, MP Biomedicals) in the drinking water for 7 days followed by normal drinking water w/o DSS. Distal colons were collected two days later.
Project description:This study aims to investigate alterations in colonic microRNA expression in mouse models of chronic colitis and colitis-associated colorectal cancer. Using the Affymetrix GeneChip miRNA 4.0 Array, miRNA profiles were analyzed from control mice, DSS-induced colitis mice, and AOM/DSS-induced colorectal tumor mice.
Project description:Objective: In this study, we aimed to evaluate the anti-inflammatory properties of nicotine and anatabine in a dextran sulfate sodium (DSS) mouse model of ulcerative colitis (UC). Methods: C57BL/6 male mice (10 groups with 8 animals each) were orally administered nicotine at a concentration of 5 or 20 mg/kg body weight or anatabine at a concentration of 5 or 20 mg/kg body weight for a total of 21 days. Colitis was induced by oral administration of 3.5% DSS in drinking water ad libitum during days 14–21. Colonic samples were collected for transcriptomic analysis and multi-analyte profiling (MAP). Results: Oral administration of anatabine, but not nicotine, reduced the clinical symptoms of DSS-induced colitis. The result of gene expression analysis suggested that anatabine had a restorative effect on global DSS-induced gene expression profiles, while nicotine only had limited effects. Accordingly, MAP findings revealed that anatabine reduced the colonic abundance of DSS-associated cytokines and increased IL‑10 abundance. Conclusions: Our results support the reduction of inflammatory effects by anatabine in the DSS mouse model of UC.