Project description:Here we applied a novel approach to isolate nuclei from complex plant tissues (https://doi.org/10.1371/journal.pone.0251149), to dissect the transcriptome profiling of the hybrid poplar (Populus tremula × alba) vegetative shoot apex at single-cell resolution.
Project description:New genomic tools open doors to study ecology, evolution, and population genomics of wild animals. For the Barn owl species complex, a cosmopolitan nocturnal raptor, a very fragmented draft genome was assembled for the American species (Tyto furcata pratincola) (Jarvis et al. 2014). To improve the genome, we assembled de novo Illumina and Pacific Biosciences (PacBio) long reads sequences of its European counterpart (Tyto alba alba). This genome assembly of 1.219 Gbp comprises 21,509 scaffolds and results in a N50 of 4,615,526 bp. BUSCO (Universal Single-Copy Orthologs) analysis revealed an assembly completeness of 94.8% with only 1.8% of the genes missing out of 4,915 avian orthologs searched, a proportion similar to that found in the genomes of the zebra finch (Taeniopygia guttata) or the collared flycatcher (Ficedula albicollis). By mapping the reads of the female American barn owl to the male European barn owl reads, we detected several structural variants and identified 70 Mbp of the Z chromosome. The barn owl scaffolds were further mapped to the chromosomes of the zebra finch. In addition, the completeness of the European barn owl genome is demonstrated with 94 of 128 proteins missing in the chicken genome retrieved in the European barn owl transcripts. This improved genome will help future barn owl population genomic investigations.
Project description:Lariat RNAs, generated as by-products of RNA splicing from excised introns, must be removed. RNA debranching enzyme (DBR1) is the core factor responsible for lariat RNA removal. However, the mechanism by which DBR1 debranches lariat RNAs remains unclear. Here, we demonstrate that six ALBA (Acetylation Lowers Binding Affinity) proteins interact with DBR1 to enhance its debranching activity and facilitate DBR1's accessibility to lariat RNAs, thereby promoting lariat RNA turnover. Similar to dbr1, alba mutants exhibit pleiotropic developmental defects and accumulate lariat RNAs. ALBAs bind to lariat RNAs via their C-terminal RGG/RG-rich repeats and assist DBR1 in binding to these RNAs. The N-terminal ALBA domain mediates the interaction with DBR1 and enhances its enzymatic activity. Cold stress induces lariat RNA accumulation by attenuating the ALBA–DBR1 interaction, which in turn reduces the induction of cold-responsive genes by impairing their transcription. Together, these findings uncover that lariat RNA turnover requires ALBA proteins.