Project description:Autologous fat grafting (AFG), although an appealing approach to repair soft tissue defects, has various complications. Excessive inflammation at the transplant site is one of the main reasons for the poor effect of fat transplantation and occurrence of complications. Our previous study proved that Salvia miltiorrhiza can enhance fat graft survival. Salvianolic acid B (Sal-B) is the most abundant and bioactive water-soluble compound in Salvia miltiorrhiza and has anti-inflammatory effects on other diseases. Therefore, we hypothesized that salvianolic acid B could improve the effect of fat grafts by inhibiting inflammation.
2023-09-14 | GSE186886 | GEO
Project description:Transcriptomic analysis of Salvia miltiorrhiza
Project description:Salvia miltiorrhiza is one of the most popular traditional medicinal herbs in Asian nations. Its dried root contains a number of tanshinones, protocatechuic aldehyde, salvianolic acid B and rosmarinic, and is used for the treatment of various diseases. To make clear the molecular mechanism of tanshinones biosynthesis in S. miltiorrhiza, the tissue-specific miRNAs and their target genes were identified by high-throughput sequencing and degradome analysis. A total of 452 known miRNAs corresponding to 589 pre-miRNAs, and 40 novel miRNAs corresponding to 24 pre-miRNAs were identified in different tissues of S. miltiorrhiza, respectively. Among them, 62 miRNAs express only in root, 95 miRNAs express only in stem, 19 miRNAs express only in leaf, and 71 miRNAs express only in flower, respectively. By the degradome analysis, 69 targets potentially cleaved by 25 miRNAs were identified. Among them, Acetyl-CoA C-acetyltransferase was identified in S. miltiorrhiza, which was cleaved by miR5072 and involved in the biosynthesis of tanshinones. This study provided valuable information for understanding the tissues expression patterns of miRNAs, and offered a foundation for future studies of the miRNA-mediated tanshinones biosynthesis in S. miltiorrhiza.
2015-03-01 | GSE60757 | GEO
Project description:Transcriptomic analysis of Ag+-treated and MeJA-treated Salvia miltiorrhiza roots
Project description:Salvia miltiorrhiza is one of the most popular traditional medicinal herbs in Asian nations. Its dried root contains a number of tanshinones, protocatechuic aldehyde, salvianolic acid B and rosmarinic, and is used for the treatment of various diseases. To make clear the molecular mechanism of tanshinones biosynthesis in S. miltiorrhiza, the tissue-specific miRNAs and their target genes were identified by high-throughput sequencing and degradome analysis. A total of 452 known miRNAs corresponding to 589 pre-miRNAs, and 40 novel miRNAs corresponding to 24 pre-miRNAs were identified in different tissues of S. miltiorrhiza, respectively. Among them, 62 miRNAs express only in root, 95 miRNAs express only in stem, 19 miRNAs express only in leaf, and 71 miRNAs express only in flower, respectively. By the degradome analysis, 69 targets potentially cleaved by 25 miRNAs were identified. Among them, Acetyl-CoA C-acetyltransferase was identified in S. miltiorrhiza, which was cleaved by miR5072 and involved in the biosynthesis of tanshinones. This study provided valuable information for understanding the tissues expression patterns of miRNAs, and offered a foundation for future studies of the miRNA-mediated tanshinones biosynthesis in S. miltiorrhiza. The tissue-specific miRNAs and their target genes were identified by high-throughput sequencing and degradome analysis.
Project description:To further investigate the potential molecular basis of the therapeutic effects of the mixture of salvianolic acids from Salvia miltiorrhiza and total flavonoids from Anemarrhena asphodeloides (MSTF) on sulfur mustard (SM) damage, gene expression analysis was conducted on rats liver tissues using microarrays.
Project description:Salvia is an important genus from the Lamiaceae with approximately 1000 species distributed globally. Several Salvia species are commercially important because of their medicinal and culinary properties. We report the construction of the first fingerprinting array for Salvia species enriched with polymorphic and divergent DNA sequences and demonstrate the potential of this array for fingerprinting several economically important members of this genus. In order to generate the Salvia Subtracted Diversity Array (SDA), a Suppression Subtractive Hybridization (SSH) was performed between a pool of ten Salvia species and a pool of non-angiosperm and angiosperms (excluding the Lamiaceae) to selectively isolate Salvia-specific sequences. A total of 285 subtracted genomic DNA (gDNA) fragments were amplified and arrayed. DNA fingerprints were obtained for fifteen Salvia genotypes including three that were not part of the original subtraction pool. Hierarchical cluster analysis indicated that the Salvia-specific SDA was capable of differentiating closely related species of S. officinalis and S. miltiorrhiza and was also able to reveal genetic relationships consistent with geographical origins. Species-specific features were also found for S. elegans, S. officinalis, S. sclarea, S. przewalskii and S. runcinata.
Project description:Salvianolic acid B (Sal-B) is the most abundant and bioactive water-soluble compound in Salvia miltiorrhiza. Studies have shown that salvianolic acid B increases the mRNA expression of adipogenic transcription factors, including PPARγ, C/EBPα and PPARα, in 3T3-L1 preadipocytes to increase glucose uptake and mitochondrial respiration, reduce glycerol release and promote adipocyte differentiation. However, the effect of Sal-B on graft fat survival and its specific mechanism have not been investigated. So we dicided using h-ADSCs to see its transcriptomes changing after Sal-B addition.
Project description:Tanshinones and phenolic acids are crucial bioactive compounds biosynthesized in Salvia miltiorrhiza. Methyl jasmonate (MeJA) is an effective elicitor to enhance the production of phenolic acids and tanshinones simultaneously, while yeast extract (YE) is used as a biotic elicitor that only induce tanshinones accumulation. However, little was known about the different molecular mechanism. To identify the downstream and regulatory genes involved in tanshinone and phenolic acid biosynthesis, we conducted comparative transcriptome profiling of S. miltiorrhiza hairy roots treated with either MeJA or YE.Total 55588 unigenes were assembled from about 1.72 billion clean reads, of which 42458 unigenes (76.4%) were successfully annotated. The expression patterns of 19 selected genes in the significantly upregulated unigenes were verified by quantitative real-time PCR. The candidate downstream genes and other cytochrome P450s involved in the late steps of tanshinone and phenolic acid biosynthesis pathways were screened from the RNA-seq dataset based on co-expression pattern analysis with specific biosynthetic genes. Additionally, 375 transcription factors were identified to exhibit a significant up-regulated expression pattern in response to induction. This study can provide us a valuable gene resource for elucidating the molecular mechanism of tanshinones and phenolic acids biosynthesis in hairy roots of S.miltiorrhiza.