Project description:Reports regarding the composition and functions of microorganisms in activated sludge from wastewater treatment plants for treating tuna processing wastewater remains scarce, with prevailing studies focusing on municipal and industrial wastewater. This study delves into the efficiency and biological dynamics of activated sludge from tuna processing wastewater, particularly under conditions of high lipid content, for pollutant removal. Through metagenomic analysis, we dissected the structure of microbial community, and its relevant biological functions as well as pathways of nitrogen and lipid metabolism in activated sludge. The findings revealed the presence of 19 phyla, 1,880 genera, and 7,974 species, with Proteobacteria emerging as the predominant phylum. The study assessed the relative abundance of the core microorganisms involved in nitrogen removal, including Thauera sp. MZ1T and Alicycliphilus denitrificans K601, among others. Moreover, the results also suggested that a diverse array of fatty acid-degrading microbes, such as Thauera aminoaromatica and Cupriavidus necator H16, could thrive under lipid-rich conditions. This research can provide some referable information for insights into optimizing the operations of wastewater treatment and identify some potential microbial agents for nitrogen and fatty acid degradation.
Project description:We investigated changes in protozoa and metazoa community in relation to process parameters in activated sludge from four wastewater treatment plants (WWTPs) throughout the period of 1 year. Principal component analysis (PCA) showed that activated sludge from investigated treatment plants had different dominating species representatives and community composition mainly depends on individual features of the treatment plants. Redundancy analysis (RDA) showed that the temperature in bioreactors was the most relevant factor explaining changes in the microorganism community, whereas reduction rate of chemical oxygen demand (COD), biological oxygen demand (BOD5), suspended solids (SS), and total nitrogen (TN) did not sufficiently explain the variation in protozoa and metazoan community composition. The results indicate that in stable working WWTP it is difficult to find a pronounced link between activated sludge species composition, process parameters, and plant configuration. Applied multivariate analysis can be a valuable tool for the exploration of the relations between community composition and WWTP process parameters.
Project description:Activated sludge (AS) plays a crucial role in the treatment of domestic and industrial wastewater. AS is a biocenosis of microorganisms capable of degrading various pollutants, including organic compounds, toxicants, and xenobiotics. We performed 16S rRNA gene sequencing of AS and incoming sewage in three wastewater treatment plants (WWTPs) responsible for processing sewage with different origins: municipal wastewater, slaughterhouse wastewater, and refinery sewage. In contrast to incoming wastewater, the taxonomic structure of AS biocenosis was found to become stable in time, and each WWTP demonstrated a unique taxonomic pattern. Most pathogenic microorganisms (Streptococcus, Trichococcus, etc.), which are abundantly represented in incoming sewage, were significantly decreased in AS of all WWTPs, except for the slaughterhouse wastewater. Additional load of bioreactors with influent rich in petroleum products and organic matter was associated with the increase of bacteria responsible for AS bulking and foaming. Here, we present a novel approach enabling the prediction of the metabolic potential of bacterial communities based on their taxonomic structures and MetaCyc database data. We developed a software application, XeDetect, to implement this approach. Using XeDetect, we found that the metabolic potential of the three bacterial communities clearly reflected the substrate composition. We revealed that the microorganisms responsible for AS bulking and foaming (most abundant in AS of slaughterhouse wastewater) played a leading role in the degradation of substrates such as fatty acids, amino acids, and other bioorganic compounds. Moreover, we discovered that the chemical, rather than the bacterial composition of the incoming wastewater was the main factor in AS structure formation. XeDetect (freely available: https://sourceforge.net/projects/xedetect) represents a novel powerful tool for the analysis of the metabolic capacity of bacterial communities. The tool will help to optimize bioreactor performance and avoid some most common technical problems.
Project description:A thiocyanate-degrading bacterium, Thiohalobacter sp. strain COW1, was isolated from activated sludge treating coke oven wastewater, and the complete genome sequence was determined. COW1 contained a single circular chromosome (3.23 Mb; G+C content, 63.4%) in which 2,788 protein-coding genes, 39 tRNA genes, and 3 rRNA genes were identified.
Project description:Activated sludge bulking is easily caused in winter, resulting in adverse effects on effluent treatment and management of wastewater treatment plants. In this study, activated sludge samples were collected from different wastewater treatment plants in the northern Xinjiang Uygur Autonomous Region of China in winter. The bacterial community compositions and diversities of activated sludge were analyzed to identify the bacteria that cause bulking of activated sludge. The sequencing generated 30087-55170 effective reads representing 36 phyla, 293 families, and 579 genera in all samples. The dominant phyla present in all activated sludge were Proteobacteria (26.7-48.9%), Bacteroidetes (19.3-37.3%), Chloroflexi (2.9-17.1%), and Acidobacteria (1.5-13.8%). Fifty-five genera including unclassified_f_Comamonadaceae, norank_f_Saprospiraceae, Flavobacterium, norank_f_Hydrogenophilaceae, Dokdonella, Terrimonas, norank_f_Anaerolineaceae, Tetrasphaera, Simplicispira, norank_c_Ardenticatenia, and Nitrospira existed in all samples, accounting for 60.6-82.7% of total effective sequences in each sample. The relative abundances of Saprospiraceae, Flavobacterium, and Tetrasphaera with the respective averages of 12.0%, 8.3%, and 5.2% in bulking sludge samples were higher than those in normal samples. Filamentous Saprospiraceae, Flavobacterium, and Tetrasphaera multiplied were the main cause for the sludge bulking. Redundancy analysis (RDA) indicated that influent BOD5, DO, water temperature, and influent ammonia had a distinct effect on bacterial community structures.