Project description:We have combined standard micrococcal (MNase) digestion of nuclei with a modified protocol for construction paired-end DNA sequencing libraries to map both nucleosomes and subnucleosome-sized particles at single base-pair resolution throughout the budding yeast genome. We found that partially unwrapped nucleosomes and subnucleosome-sized particles can occupy the same position within a cell population, suggesting dynamic behavior. By varying the time of MNase digestion, we have been able to observe changes that reflect differential sensitivity of particles, including eviction of nucleosomes. Our protocol and mapping method provide a general strategy for characterizing full epigenomes. We used micrococcal nuclease mapping, chromatin immunoprecipitation and paired-end sequencing to determine the structure of yeast centromeres at single base-pair resolution.
Project description:We have combined standard micrococcal (MNase) digestion of nuclei with a modified protocol for construction paired-end DNA sequencing libraries to map both nucleosomes and subnucleosome-sized particles at single base-pair resolution throughout the budding yeast genome. We found that partially unwrapped nucleosomes and subnucleosome-sized particles can occupy the same position within a cell population, suggesting dynamic behavior. By varying the time of MNase digestion, we have been able to observe changes that reflect differential sensitivity of particles, including eviction of nucleosomes. Our protocol and mapping method provide a general strategy for characterizing full epigenomes.
Project description:In order to determine the factors that regulate senescence induction, we tried to identfy genes that are predominantly expressed in large sized senescent cells with tetraploid DNA. We sorted large or small sized HCA2 cells treated wth IR (10Gy) according to size and structure (FSC and SSC) by FACScan and analyzed global gene expression patterns.
Project description:“Biological noise” is defined as functionally insignificant events that occur in living cells due to imperfect fidelity of biological processes. Distinguishing between biological function and biological noise is often difficult, and experiments to measure biological noise have not been performed. Here, we measure biological noise in yeast cells by analyzing chromatin structure and transcription of an 18 kb region of DNA whose sequence was randomly generated and hence is functionally irrelevant. Nucleosome occupancy on random-sequence DNA is comparable to that on yeast genomic DNA. However, nucleosome-depleted regions are much less frequent, and there are fewer well-positioned nucleosomes and shorter nucleosome arrays. Steady-state levels of RNAs expressed from random-sequence DNA are comparable to those of yeast mRNAs, although transcription and mRNA decay rates are at higher levels. Transcriptional initiation (5’ ends) from random-sequence DNA occurs at numerous sites at low levels, indicating very low intrinsic specificity of the Pol II machinery. In contrast, poly(A) profiles (relative levels and clustering of 3’ isoforms) of random-sequence RNAs are roughly comparable to those of endogenous yeast RNAs, which are restricted to 3’ untranslated regions. RNAs expressed from random-sequence DNA show higher cell-to-cell variability than RNAs expressed from yeast genomic DNA, suggesting that functional elements limit the variability among individual cells within a population. These observations indicate that transcriptional noise occurs at high levels in yeast, and they provide insight into how chromatin and transcription patterns arise from the evolved yeast genome.
Project description:Though the sequence of the genome within each eukaryotic cell is essentially fixed, it exists in a complex and changing chromatin state. This state is determined, in part, by the dynamic binding of proteins to the DNA. These proteins---including histones, transcription factors (TFs), and polymerases---interact with one another, the genome, and other molecules to allow the chromatin to adopt one of exceedingly many possible configurations. Understanding how changing chromatin configurations associate with transcription remains a fundamental research problem. We sought to characterize at high spatiotemporal resolution the dynamic interplay between transcription and chromatin in response to cadmium stress. While gene regulatory responses to environmental stress in yeast have been studied, how the chromatin state is modified and how those modifications connect to gene regulation remain unexplored. By combining MNase-seq and RNA-seq data, we found chromatin signatures of transcriptional activation and repression involving both nucleosomal and TF-sized DNA binding factors.
Project description:In the yeast genome, a large proportion of nucleosomes occupy well-defined positions. While the contribution of chromatin remodelers and DNA binding proteins to maintain this organization is well established, the relevance of the DNA sequence to nucleosome positioning in the genomic context remains controversial. Through genome-wide, quantitative analysis of nucleosome positioning and high-resolution mutagenenesis of mononucleosomal DNA, we show that sequence changes distort the nucleosomal pattern at the level of individual nucleosomes. This effect is equally detected in transcribed and non-transcribed regions, suggesting the existence of sequence elements contributing to positioning. To identify such elements, we incorporated information from nucleosomal signatures into artificial synthetic DNA molecules and found that they generated regular nucleosomal arrays indistinguishable from those of endogenous sequences. Strikingly, this information is species-specific and can be combined with coding information through the use of synonymous codons such that genes from one species can be engineered to adopt the nucleosomal organization of another. These findings open up the possibility of designing coding and non-coding DNA molecules capable of directing their own nucleosomal organization.
Project description:Investigation of centromeres in the pathogenic yeast Candida parapsilosis, shows that the location of two centromeres are polymorphic within this species. The centromeres consist of large inverted repeats (IRs), surrounding unique sequences. New (neo) centromeres have emerged in one C. parapsilosis isolate even though the original CEN location is undamaged. The neocentromeres do not contain IRs, and have no obvious sequence features.
Project description:In yeast cells, preferential accessibility of the HIS3-PET56 promoter region is determined by a general property of the DNA sequence, not by defined sequence elements. In vivo, this region is largely devoid of nucleosomes, and accessibility is directly related to reduced histone density. The HIS3-PET56 and DED1 promoter regions associate poorly with histones in vitro, indicating that intrinsic nucleosome positioning and stability is a major determinant of preferential accessibility. Specific and genome-wide analyses indicate that low nucleosome density is a very common feature of yeast promoter regions that correlates poorly with transcriptional activation. Thus, the yeast genome is organized into structurally distinct promoter and non-promoter regions, whose DNA sequences inherently differ with respect to nucleosome formation. This organization ensures that transcription factors bind preferentially to appropriate sites in promoters, rather than to the excess of irrelevant sites in non-promoter regions. Keywords: other
Project description:GwAAP: A Genome-wide Amino Acid coding-decoding quantitative Proteomic system was designed in which each protein could be assigned with a distinct code. Using synthetic biology technology, the amino acids codes were coded in N terminal of the corresponding proteins in the genome of yeast (Saccharomyces cerevisiae), so that the copy number of the code sequences were identical with the targeted proteins in yeast. The code sequences were enriched by HA antibody and decoded and quantified by mass spectrometry strategy. In general, this method increased the detection sensitivity by peptide enrichment, which reduced the dynamic range and the complexity of proteomics. In addition, coding sequence with similar physical and chemical properties resulted in the comparable linear signal response of the mass spectrum, which significantly improve the accuracy of proteomic quantification.