Project description:Callobius koreanus (C.koreanus) is a wandering spider and a member of the Amaurobiidae family, infraorder Araneae. RNA-sequencing was performend for venom gland tissue and whole body except venom gland.
Project description:Agelena koreana is indigenous spider in South Korea that lives on piles of trees building webs. RNA-sequencing was performed for venom gland tissue and whole body except venom gland.
Project description:Acanthoscurria juruenicola is an Amazonian tarantula spider described for the first time a century ago. Specimens of both genders are similar in size and in most morphological aspects, but ecological behavior and their venom composition remained unknown to date. Here we present the trascriptomics, proteomics and peptidomics characterization of the spider venom by a combination of mass spectrometric analysis of both native and digested peptides, venom gland transcriptomics and bioinformatics.
Project description:We generated ATAC-seq data for pre- and post-extraction venom gland samples and H3K4me3, H3K27ac, and CTCF ChIP-seq from post-extraction venom gland samples from the Prairie Rattlesnake to investigate patterns of chromatin accessibility, transcription factor binding, and insulation during venom production, and to identify open promoters and active enhancer regions.
2022-04-07 | GSE169217 | GEO
Project description:Venom gland organogenesis in the common house spider
Project description:Most knowledge on spider venoms concerns neurotoxins acting on ion channels, whereas proteins and their significance for the envenomation process are neglected. The comprehensive analysis presented here of the venom gland transcriptome and proteome of Cupiennius salei with a focus on proteins and cysteine-containing peptides offers new insight into the structure and function of spider venom, presented here as dual prey-inactivation strategy. After venom injection, many enzymes and proteins, dominated by α-amylase, angiotensin-converting enzyme, and cysteine-rich secretory proteins, interact with main metabolic pathways, leading to major disturbance of the cellular homeostasis. Hyaluronidase and cytolytic peptides destroy tissue and membranes, thus supporting the spread of other venom compounds. We detected 81 transcripts of neurotoxins from 13 peptide families, whereof two families comprise 93.7% of all cysteine-containing peptides. This raises the question of the importance of the other low-expressed peptide families. The identification of a venom gland-specific defensin-like peptide and an aga-toxin-like peptide in the hemocytes offers an important clue on the recruitment and neofunctionalization of body proteins and peptides as the origin of toxins.