Project description:Interventions: Group 1: Quantitative Expression Analysis of the proteom and gene Expression of Primary Tumor, normal tissue, and metastases
Primary outcome(s): Disease associated Proteins and Genes
Study Design: Allocation: ; Masking: ; Control: ; Assignment: ; Study design purpose: basic science
Project description:Clavicular cortical hyperostosis (CCH) is a sterile inflammatory bone disorder of unknown etiology, clinically characterized by pain and/or swelling of the clavicle. The aim of the study was to identify and confirm specific gene expression patterns in patients with CCH.
Project description:Cortical Dysplasia (CD) is the histopathological substrate in almost half of all drug-resistant epilepsy. Little is known about the gene expression profile of CD. As such information may help target therapeutics more effectively, our aim was to perform a gene expression analysis of an animal model of cortical dysplasia induced by in utero irradiation. THIS SERIES (GSE13697) INCLUDES ALL (AND ONLY) EXPERIMENTAL SAMPLES--I.E. IRRADIATED/CORTICAL DYSPLASIA (9).
Project description:Chromatin modifications play a key role in regulating gene expression during development and adult physiology. Histone acetylation, particularly H3K27ac, is associated with increased activity of gene regulatory elements such as enhancers and promoters. However, the regulation of the machinery that write, read, and erase this modification remains poorly understood. In particular, the SIN3A-HDAC1 complex possesses histone deacetylase activity, yet it commonly resides at active regulatory regions. Here, we study BAHCC1, a large chromatin-associated protein essential for viability, and recently reported to play a largely repressive role. We show that in neuronal lineage cells, BAHCC1 is mainly associated with regulatory elements marked with H3K27ac. BAHCC1 interacts and co-occupies shared genomic regions with the SIN3A scaffold protein, and its perturbations lead to altered acetylation and expression of proximal genes in a neuronal cell line and primary cortical neurons. The regulated genes are enriched for those functioning in neurogenesis and cell migration, and primary cortical neurons with reduced Bahcc1 expression display enhanced neurite outgrowth. We thus propose a model in which BAHCC1 antagonizes SIN3A histone deacetylation and positively regulates the expression of genes that are important for growth and migration-related processes in the neuronal lineage.