Project description:The coordination of chloroplast and nuclear genome status are critical for plant cell function, but the mechanism remain largely unclear. In this study, we report that Arabidopsis thaliana CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in both the chloroplast and the nucleus.
2022-12-13 | GSE220489 | GEO
Project description:The complete chloroplast genome sequence of medicinal plant
| PRJNA885109 | ENA
Project description:Chloroplast genome sequence of the medicinal plant Tetradium ruticarpum
Project description:The coordination of chloroplast and nuclear genome status are critical for plant cell function, but the mechanism remain largely unclear. In this study, we report that Arabidopsis thaliana CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in both the chloroplast and the nucleus.
Project description:<p>Piper sarmentosum Roxb. is a significant medicinal and edible plant, and its active compound piperlongumine (PL) has garnered attention due to its pharmacological activities, including anticancer and anti-inflammatory effects. However, the key enzymes and regulatory mechanisms of its biosynthetic pathway are not yet fully understood. In this study, we generated a chromosome-level genome assembly, with a contig N50 of 15.36 Mb and a scaffold N50 of 22.52 Mb. The BUSCO assessment indicated high completeness, with a score of 97.4%. Genome annotation revealed 39,154 protein-coding genes and identified three lineage-specific whole-genome duplication (WGD) events that expanded gene families associated with alkaloid biosynthesis. Metabolomic analysis identified 4,456 metabolites, including 238 alkaloids, and demonstrated that flowers and fruits are the primary organs for PL biosynthesis. Molecular docking and the correlation of gene expression with levels of PL suggest that PsHCT1 catalyzes the condensation of sinapoyl-CoA and 5,6-dihydropyridinone, whilePsCCoAOMT1 is responsible for the final synthesis of PL. This study provides insights into the mechanism of alkaloid biosynthesis in P. sarmentosum and may help lay the groundwork for enhancing the production of medicinal compounds.</p>
Project description:Asterids is one of the major plant clades comprising of many commercially important medicinal species. One of the major concerns in medicinal plant industry is adulteration/contamination resulting from misidentification of herbal plants. This study reports the construction and validation of a microarray capable of fingerprinting medicinally important species from the Asterids clade.