Project description:Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome27 centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprises an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.
Project description:Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome27 centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprises an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting- 37 animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.
Project description:Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the genera Entodinium has been consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that species such as Entodinium caudatum exert, their greater biological and metabolic contributions to rumen function remain largely undescribed. Here, we have leveraged (meta)genome-centric metaproteome datasets from rumen fluid samples originating from both cows and goats fed contrasting diets, to detail the specific metabolic niches that E. caudatum occupies in the context of its bacterial and archaeal co-habitants. Initial proteome estimations via total protein counts and label free quantification highlight that E. caudatum populations comprise an extensive fraction of the total rumen metaproteome. Our analysis also suggested increased microbial predation and volatile fatty acid metabolism by E. caudatum to occur in high methane emitting animals, although with no apparent direct metabolic link to methanogenesis. Despite E. caudatum having a well-established reputation of digesting starch, it was unexpectedly less active in low methane emitting animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation. Collectively, our results illuminate the substantial metabolic influence under-explored eukaryotic populations have in the rumen, with greater implications towards both digestion and methane metabolism.
Project description:Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the genera Entodinium has been consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that species such as Entodinium caudatum exert, their greater biological and metabolic contributions to rumen function remain largely undescribed. Here, we have leveraged (meta)genome-centric metaproteome datasets from rumen fluid samples originating from both cows and goats fed contrasting diets, to detail the specific metabolic niches that E. caudatum occupies in the context of its bacterial and archaeal co-habitants. Initial proteome estimations via total protein counts and label free quantification highlight that E. caudatum populations comprise an extensive fraction of the total rumen metaproteome. Our analysis also suggested increased microbial predation and volatile fatty acid metabolism by E. caudatum to occur in high methane emitting animals, although with no apparent direct metabolic link to methanogenesis. Despite E. caudatum having a well-established reputation of digesting starch, it was unexpectedly less active in low methane emitting animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation. Collectively, our results illuminate the substantial metabolic influence under-explored eukaryotic populations have in the rumen, with greater implications towards both digestion and methane metabolism.
Project description:Investigation of whole genome gene expression level changes in rumen epithelium of dairy cattle at different stages of rumen development and on different diets.
Project description:A healthy rumen is crucial for normal growth and improved production performance of ruminant animals. Rumen microbes participate in and regulate rumen epithelial function, and the diverse metabolites produced by rumen microbes are important participants in rumen microbe-host interactions. SCFAs, as metabolites of rumen microbes, have been widely studied, and propionate and butyrate have been proven to promote rumen epithelial cell proliferation. Succinate, as an intermediate metabolite in the citric acid cycle, is a final product in the metabolism of certain rumen microbes, and is also an intermediate product in the microbial synthesis pathway of propionate. However, its effect on rumen microbes and rumen epithelial function has not been studied. It is unclear whether succinate can stimulate rumen epithelial development. Therefore, in this experiment, Chinese Tan sheep were used as experimental animals to conduct a comprehensive analysis of the rumen microbiota community structure and rumen epithelial transcriptome, to explore the role of adding succinate to the diet in the interaction between the rumen microbiota and host.
Project description:AIMS: To explore and validate the utility of rumen endoscopy for collection of rumen papillae for gene expression measurement. METHODS: Four adult Coopworth ewes were fasted for either 4 or 24 hours. Animals were sedated, placed in a dorsally recumbent position at 45 degrees with the head upright, and an endoscope inserted via a tube inserted into the mouth. Biopsies of rumen papillae were taken from the ventral surface of the rumen atrium under visual guidance. Two biopsies were collected from one of the animals that had been fasted for 4 hours, and three from one of the animals that had been fasted for 24 hours. Video of the rumen atrium and reticulum was also collected. The animals recovered uneventfully. Biopsies were subsequently used for extraction and sequencing of mRNA. RESULTS: The ventral surface of the rumen atrium was accessible after 4 hours off pasture, but a larger region was accessible after 24 hours of fasting. Sedation allowed access for endoscope use for around 5 to 10 minutes after which increased saliva flow was noted. Rumen papillae biopsies were easily collected, with samples from a variety of sites collected in the ∼10 minute time window. High quality RNA was obtained for stranded mRNA sequencing. Of the resulting reads, 69–70% mapped uniquely to version 3.1 of the ovine genome, and 48–49% to a known gene. The rumen mRNA profiles were consistent with a previously reported study. CONCLUSIONS: This method for obtaining rumenal tissue was found to be rapid and resulted in no apparent short or long term effects on the animal. High quality RNA was successfully extracted and amplified from the rumen papillae biopsies, indicating that this technique could be used for future gene expression studies. The use of rumen endoscopy could be extended to collection of a variety of rumen and reticulum anatomical measurements and deposition and retrieval of small sensors from the rumen. Rumen endoscopy offers an attractive and cost effective approach to repeated rumen biopsies compared with serial slaughter or use of cannulated animals.