Project description:Tea plant (Camellia sinensis) is one of the most important horticultural cash crops, and tea green leafhopper (Matsumurasca onukii) is an extremely harmful sap-sucking pest of tea plant. Serious generation overlapping, which is mainly caused by the long oviposition period, leads to poor control effect of pesticides on this pest in the tea plantation. But the intuitive evidences of continuous oogenesis and egg-laying of this pest are still lacking, which seriously hindered the development of genetic control methods. Here, we clarified the main structures of the inner reproductive system of tea green leafhopper female adult. Oviposition behaviors were monitored as well, and six oviposition steps were recorded. According to the maturity of oocytes, the maturity stages of the reproductive system under different copulation periods were classified into 4 stages. For female adults at stage IV, mature and immature oocytes were presented simultaneously, and the developmental levels of oocytes were asynchronous among different ovarioles. The proportion of gravid females with mature oocytes significantly increased when the continuous copulation time was prolonged. In sync with the development of the ovary maturity, female adults started to slightly deposit eggs at the 5th day, and then increased dramatically. In addition, we found that, whether mature or immature, oocytes in the ovarioles always emitted green fluorescence under blue light excitation, which in turn provide solid proof for the new egg detection method from the insect physiology point of view.
Project description:The tea plant (Camellia sinensis) suffers heavily from a harmful piercing pest, the tea green leafhopper (TLH) Empoasca (Matsumurasca) onukii Matsuda. In the present study, we studied the effect of an efficient elicitor of plant disease resistance, the β-1,3-glucan laminarin, on the induced defense against TLH in tea plants. Defense responses elicited by laminarin in tea include the activation of mitogen-activated protein kinases and WRKY, the burst of H2O2, salicylic acid, and abscisic acid, and the accumulation of direct-defense chemicals (including chitinase, phenylalanine ammonia lyase, callose, polyphenol oxidase, and flavonol synthase), as well as the production of volatile compounds. The laminarin-treated tea plants reduced the performance of TLH and enhanced the attractiveness to the egg parasitoid wasp of TLH, Stethynium empoascae Subba Rao. In the field experiment, laminarin application effectively reduced the number of TLH by attracting parasitoids. These results suggest that laminarin can induce protection against TLH by regulating signaling pathways in tea plant. Our study also proposes an environment friendly strategy for the integrated management of an economically important piercing pest.
Project description:ImportanceHost-associated microbial communities play an important role in the fitness of insect hosts. However, the factors shaping microbial communities in wild populations, including environmental factors and interactions among microbial species, remain largely unknown. The tea green leafhopper has a wide geographical distribution and is highly adaptable, providing a suitable model for studying the effect of ecological drivers on microbiomes. This is the first large-scale culture-independent study investigating the microbial communities of M. onukii sampled from different locations. Altitude as a key environmental factor may have shaped microbial communities of M. onukii by affecting the relative abundance of endosymbionts, especially Wolbachia. The results of this study, therefore, offer not only an in-depth view of the microbial diversity of this species but also an insight into the influence of environmental factors.
Project description:The tea green leafhopper, Empoasca (Matsumurasca) onukii Matsuda, is one of the dominant pests in major tea production regions of East Asia. Recent morphological studies have revealed variation in the male genitalic structures within and among populations. However, the genetic structure of this pest remains poorly understood. This study explores the genetic diversity and population structure of this pest in nineteen populations from the four main Chinese tea production areas using microsatellite markers, with one Japanese population also examined. The results show low to moderate levels of genetic differentiation with populations grouped into four clusters, i.e. the Jiangbei group, the Southwest group 1, the Southwest group 2 and the South China group. Populations from China have a close phylogenetic relationship but show significant isolation by distance. Lower genetic diversity and genetic differentiation of E. (M.) onukii were found in the Kagoshima population of Japan. Evidence for genetic bottlenecks was detected in the South China and Jiangnan populations. Population expansion was found in the Southwest, Jiangbei and Kagoshima populations. This is the most extensive study of the population genetics of this species and contributes to our understanding of its origin and evolutionary history.