Project description:To exlore more circRNAs involved in Arabidopsis thaliana, we deeply sequenced 14 samples including whole plants from four developmental stages (rosette leaves > 1 mm in length; rosette growth complete; 50% of flowers to be produced have opened; first silique shattered), aerial part of plants from four stress treatments (control, drought, salinity and heat), five organs (roots, stems, leaves, flowers and siliques) and a mixed sample from whole plants across the lifespan (cotyledons emergence, rosette leaves﹥1 mm, rosette growth complete, first flower open, flourishing florescence, first silique shattered, senescence). The total RNA was purified by rRNA-depletion and linear RNA removal with RNAseR, and paired-end (PE) sequenced by Illumina HiSeq 2500 (read length, PE125, the mixed sample) and Illumina Hiseq X Ten (read length, PE150, 13 independent samples) platforms. We obtained 181.97 Gb raw data (151.37 Gb from 13 samples and 30.6 Gb from a mixed sample) and identified 5861 circRNAs with expression quantity. We annotated the parent genes of these circRNAs and predicted their target sites of microRNAs.
Project description:We sequenced the total RNA from a tissues mixed sample (inflorescences, rosette leaves, cauline leaves and stems) of Arabidopsis thaliana. After total RNA extraction, the same amount of tissue RNA were mixed. Ribosomal RNAs were deleted from the mixed tissue total RNAs using RiboMinus™ Plant Kit repeated three times. We also sequenced 9 poly(A)- RNAs from seedlings treated with different stress conditions at different times. The poly(A)- RNAs were collected by removing poly(A)+ RNAs four times . Then rRNAs were removed from poly(A)- RNAs three times.
2014-09-18 | GSE49325 | GEO
Project description:Full-length transcriptome of leaves, stems and roots in Cinnamomum burmanni
Project description:We sequenced the total RNA from a tissues mixed sample (inflorescences, rosette leaves, cauline leaves and stems) of Arabidopsis thaliana. After total RNA extraction, the same amount of tissue RNA were mixed. Ribosomal RNAs were deleted from the mixed tissue total RNAs using RiboMinus™ Plant Kit repeated three times. We also sequenced 9 poly(A)- RNAs from seedlings treated with different stress conditions at different times. The poly(A)- RNAs were collected by removing poly(A)+ RNAs four times . Then rRNAs were removed from poly(A)- RNAs three times. Sequencing of total RNAs from the mixed tissues sample is taken as an example of collecting novel transcripts from high-throughput data, which could be clarified by noncoding scores derived from our integrative models. Sequencing of nonpolyA RNAs are used for identifing stress-responsive nonpolyA lncRNAs and for validation of predicted lncRNAs.
Project description:We generated 70.9 Gb of high-quality sequencing data (~7.88 Gb per sample) and catalogued the expression profiles of 54,238 annotated Chenopodium quinoa genes in each sample. These genes have known or potential roles in the roots, stems, and leaves of quinoa. Therefore, we are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms.
2022-03-03 | GSE156523 | GEO
Project description:Full-length transcriptome of Gnetum luofuense stems
Project description:Long intergenic noncoding RNAs (lincRNA) transcribed from intergenic regions of eukaryotic genomes play important roles in key biological processes; yet, plant lincRNAs remain poorly characterized. Here we profiled lincRNA expression in inflorescences, leaves and roots using ATH lincRNA v1 array. we found 92% lincRNAs could be detected in at least 2 ATH lincRNA v1 arrays and majority of the lincRNAs were expressed at levels higher than those of pri-miRNAs but lower than those of mRNAs.Using a cut-off of 2-fold change, we identified 149 lincRNAs preferentially expressed in inflorescences, 232 in leaves and 164 in roots.
Project description:We report the genome-wide transcriptome of soybean seeds across several stages of seed development and the entire life cycle using Illumina high-throughput sequencing technology. Specifically, we profiled whole seeds containing globular-stage, heart-stage, cotyledon-stage, and early maturation-stage embryos. We also profiled dry soybean seeds, and vegetative and reproductive tissues including leaves, roots, stems, seedlings, and floral buds. Illumina sequencing of transcripts from whole seeds at five stages of seed development (globular, heart, cotyledon, early-maturation, dry), and vegetative (leaves, roots, stems, seedlings) and reproductive (floral buds) tissues.
Project description:Long intergenic noncoding RNAs (lincRNA) transcribed from intergenic regions of eukaryotic genomes play important roles in key biological processes; yet, plant lincRNAs remain poorly characterized. Here we profiled lincRNA expression in inflorescences, leaves and roots using ATH lincRNA v1 array. we found 92% lincRNAs could be detected in at least 2 ATH lincRNA v1 arrays and majority of the lincRNAs were expressed at levels higher than those of pri-miRNAs but lower than those of mRNAs.Using a cut-off of 2-fold change, we identified 149 lincRNAs preferentially expressed in inflorescences, 232 in leaves and 164 in roots. Nine arrays were hybridized with RNAs from inflorescences, leaves and roots with 3 biological replicates.