Project description:Energy densification and enrichment of monounsaturated fatty acids increases oat’s nutritional value among small grain cereals. However, optimization of oat oil traits is challenging through conventional breeding. Using the biolistic method for oat’s oil improvement, here we showed that metabolic engineering is a feasible strategy in improving the oil traits of oat. In this study, two constructs containing three genes involved in lipid biosynthesis pathway (AtWRI1, AtDGAT, and SiOLEOSIN) were transformed into oat cultivar ‘Park’ to enhance the oil composition and content in oat grain and leaves. We performed RNA-sequencing in mature seeds and boot leaves of trasngenic lines. Transgene expression contributed to a global transcriptional reprogramming in oat seeds and leaves. Endogenous DGAT, WRI1, and OLEOSIN genes were up regulated while the genes involved in fatty acid biosynthesis expressed in opposite way between oat seeds and leaves. Transcriptomic studies revealed differential gene expression mainly enriched in lipid metabolism.
Project description:This study explored the molecular mechanisms underlying oat grain development in two oat varieties, Bannister and Bilby, with a focus on lipid biosynthesis.
Project description:The goal was to measure the postprandial effect of an oat bran meal on gene expression in leukocytes from healthy subjects and to investigate the postprandial glucose, insulin and triglyceride responses. Linear mixed models were used for the array data to study the simultaneous dependency on many factors and functional categories of genes whose expression were correlated with oat bran intake were determined.
Project description:Background & Aims: Non-alcoholic fatty liver disease (NALFLD)-associated changes in gut microbiota are important drivers of disease progression toward fibrosis. Therefore, reversing microbiota alterations could ameliorate NAFLD progression. Oat beta-glucan, a non-digestible polysaccharides, has shown promising therapeutic effects on hyperlipidemia associated with NAFLD, but its impact on gut microbiota and most importantly NAFLD fibrosis remains unknown. Methods: We performed detailed metabolic phenotyping including body composition, glucose tolerance, and lipid metabolism as well as comprehensive characterization of the gut-liver axis in a western-style diet (WSD)-induced model of NAFLD and assessed the effect of a beta-glucan intervention on early and advanced liver disease. Gut microbiota was modulated using broad-spectrum antibiotic (Abx) treatment. Results: Oat beta-glucan supplementation did not affect WSD-induced body weight gain, glucose intolerance, and the metabolic phenotype remained largely unaffected. Interestingly, oat beta-glucan dampened NAFLD inflammation, associated with significantly reduced monocyte-derived macrophages (MoMFs) infiltration, fibroinflammatory gene expression, and strongly reduced fibrosis development. Mechanistically, this protective effect was not mediated by changes in bile acid composition or signaling, but was dependent on gut microbiota and was lost upon Abx treatment. Specifically, oat beta-glucan partially reversed unfavorable changes in gut microbiota, resulting in an expansion of protective taxa, including Ruminococcus, and Lactobacillus followed by reduced translocation of TLR ligands. Conclusions: Our findings identify oat beta-glucan as a highly efficacious food supplement that dampens inflammation and fibrosis development in diet-induced NAFLD. These results, along with its favorable dietary profile, suggest that it may be a cost-effective and well-tolerated approach to preventing NAFLD progression and should be assessed in clinical studies.