Project description:Wastewater treatment plants use a variety of bioreactor types and configurations to remove organic matter and nutrients. Little is known regarding the effects of different configurations and within-plant immigration on microbial community dynamics. Previously, we found that the structure of ammonia-oxidizing bacterial (AOB) communities in a full-scale dispersed growth activated sludge bioreactor correlated strongly with levels of NO2- entering the reactor from an upstream trickling filter (Wells et al 2009). Here, to further examine this puzzling association, we profile within-plant microbial biogeography (spatial variation) and test the hypothesis that substantial microbial immigration occurs along a transect (raw influent, trickling filter biofilm, trickling filter effluent, and activated sludge) at the same full-scale wastewater treatment plant. AOB amoA gene abundance increased >30-fold between influent and trickling filter effluent concomitant with NO2- production, indicating unexpected growth and activity of AOB within the trickling filter. Nitrosomonas europaea was the dominant AOB phylotype in trickling filter biofilm and effluent, while a distinct ‘Nitrosomonas-like’ lineage dominated in activated sludge. Prior time series indicated that this ‘Nitrosomonas-like’ lineage was dominant when NO2- levels in the trickling filter effluent (i.e., activated sludge influent) were low, while N. europaea became dominant in the activated sludge when NO2- levels were high. This is consistent with the hypothesis that NO2- production may co-occur with biofilm sloughing, releasing N. europaea from the trickling filter into the activated sludge bioreactor. Phylogenetic microarray (PhyloChip) analyses revealed significant spatial variation in taxonomic diversity, including a large excess of methanogens in the trickling filter relative to activated sludge and attenuation of Enterobacteriaceae across the transect, and demonstrated transport of a highly diverse microbial community via the trickling filter effluent to the activated sludge bioreactor. Our results provide compelling evidence that substantial immigration between coupled process units occurs and may exert significant influence over microbial community dynamics within staged bioreactors.
Project description:Population dynamics of methanogenic genera was investigated in pilot anaerobic digesters. Cattle manure and two-phase olive mill wastes were codigested at a 3:1 ratio in two reactors operated at 37 ï¾°C and 55 ï¾°C. Other two reactors were run with either residue at 37 ï¾°C. Sludge DNA extracted from samples taken from all four reactors on days 4, 14 and 28 of digestion was used for hybridisation with the AnaeroChip, an oligonucleotide microarray targeting those groups of methanogenic archaea that are commonly found under mesophilic and thermophilic conditions (Franke-Whittle et al. 2009, in press, doi:10.1016/j.mimet.2009.09.017).
Project description:Background: Methane yield and biogas productivity of biogas plants depend on microbial community structure and functionality, substrate supply, and general process parameters. Little is known, however, about the correlations between microbial community function and the process parameters. To close this knowledge gap the microbial community of 40 industrial biogas plants was evaluated by a metaproteomics approach in this study. Results: Liquid chromatography coupled to tandem mass spectrometry (Elite Hybrid Ion Trap Orbitrap) enabled the identification of 3138 metaproteins belonging to 162 biological processes and 75 different taxonomic orders. Therefore, database searches were performed against UniProtKB/Swiss-Prot and several metagenome databases. Subsequent clustering and principal component analysis of these data allowed to identify four main clusters associated to mesophilic and thermophilic process conditions, upflow anaerobic sludge blanket reactors and sewage sludge as substrate. Observations confirm a previous phylogenetic study of the same biogas plant samples that was based on 16S-rRNA gene by De Vrieze et al. (2015) (De Vrieze, Saunders et al. 2015). Both studies described similar microbial key players of the biogas process, namely Bacillales, Enterobacteriales, Bacteriodales, Clostridiales, Rhizobiales and Thermoanaerobacteriales as well as Methanobacteriales, Methanosarcinales and Methanococcales. In addition, a correlation study and a Gephi graph network based on the correlations between the taxonomic orders and process parameters suggested the presence of various trophic interactions, e.g. syntrophic hydrogen transfer between Thermoanaerobacteriales and Methanomicrobiales. For the elucidation of the main biomass degradation pathways the most abundant 1% of metaproteins were assigned to the KEGG map 1200 representing the central carbon metabolism. Additionally, the effect of the process parameters (i) temperature, (ii) organic loading rate (OLR), (iii) total ammonia nitrogen (TAN) and (iv) sludge retention time (SRT) on these pathways was investigated. For example high TAN correlated with hydrogenotrophic methanogens and bacterial one-carbon metabolism, indicating syntrophic acetate oxidation. Conclusion: This study shows the benefit of large-scale proteotyping of biogas plants, enabling the identification of general correlations between the process parameters and the microbial community structure and function. Changes in the level of microbial key functions or even in the microbial community type represent a valuable hint for process problems and disturbances.