Project description:Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.
Project description:Acute myeloid leukemia (AML) is a clonal disorder characterized by immature blasts and arrested differentiation that primarily affects the bone marrow (BM) and occasionally presents as extramedullary (EM) disease. EM manifestations highlight AML’s adaptability to distinct microenvironments, which we examined using spatial analyses of medullary and EM tissues. We describe a workflow for Visium-based spatial transcriptomics in medullary and EM AML, revealing insights into cell-cell communication and the spatial organization of AML hierarchies. In BM, monocytes and granulocyte-monocyte progenitors colocalized with leukemic populations, sharing molecular signatures with those in EM sample. CXCL12-CXCR4-mediated communication correlated with PI3K/AKT/mTOR signaling in inflammatory niches. Trans-differentiation signals concentrated in AML-infiltrated regions; committed-like AML cells resided in inflammatory niches distant from trabeculae, while primitive-like cells localized near the endosteal niche. GeoMX digital spatial profiling and Opal multiplex fluorescent immunohistochemistry provided orthogonal validation. Overall, our study offers a valuable multimodal resource for exploring AML spatial biology with potential applications in other BM malignancies.
Project description:The purpose of this protocol is to develop a detailed MRI technique and haemodynamic maps enabling early detection of colorectal metastases in the liver.