Project description:Investigation of whole genome gene expression level changes in the bacterial wilt pathogen Ralstonia solanacearum, strain GMI1000 at 20°C and 28°C in culture and in planta. The tropical strain GMI1000 cannot wilt tomato plants at 20°C although it can cause full-blown disease at 28°C.
Project description:Investigation of whole genome gene expression level changes in the bacterial wilt pathogen Ralstonia solanacearum, strain UW551 at 20°C and 28°C in culture and in planta. The temperatel strain UW551 can wilt and cause full-blown disease on tomato plants at 28°C as well as at 20°C.
Project description:Bacterial wilt caused by Ralstonia solanacearum is a lethal, soil-borne disease of tomato. Control of the disease with chemicals and crop rotation is insufficient, because the pathogen is particularly well adapted for surviving in the soil and rhizosphere. Therefore, cultivar resistance is the most effective means for controlling bacterial wilt, but the molecular mechanisms of resistance responses remain unclear. We used microarrays to obtain the characteristics of the gene expression changes that are induced by R. solanacearum infection in resistant cultivar LS-89 and susceptible cultivar Ponderosa.
Project description:We found the Type III effector protein RipAB could suppress multiple plant immune responses and is important for the virulence of bacterial wilt pathogen Ralstonia solanacearum.
Project description:Ralstonia solanacearum causes disease in more than 200 plant species including bacterial wilt of tomatoes and brown rot of potatoes. This bacterium is a soilborne and waterborne pathogen, with a worldwide distribution and is on the EPPO A2 list of quarantine pathogens. ln the UK, the bacterium is present in the rivers, but its prevalence depends on the season; it is highly abundant in the summer and undetectable during winter. To survive the cold winter temperatures, R. solanacearum overwinters inside plants growing alongside the rivers such as Solanum dulcamara. Interestingly, this plant species doesn’t show bacterial wilt symptoms. To understand genomic differences with susceptible hosts, we assembled the genome using Oxford Nanopore Technologies and Illumina sequencing.
Project description:Biofilm lifestyle is critical for bacterial pathogens to colonize and protect themselves from host immunity and antimicrobial chemicals in plants and animals. The formation and regulation mechanism of phytobacterial biofilm are still obscure. Here, we found that Ralstonia solanacearum Resistance to ultraviolet C (RuvC) is highly abundant in biofilm and positively regulates pathogenicity by governing systemic movement in tomato xylem. RuvC protein accumulates at the later stage of biofilm and specifically targets the Holliday junction (HJ) like structures to disrupt biofilm extracellular DNA (eDNA) lattice, thus facilitating biofilm dispersal. Recombinant RuvC protein can resolve extracellular HJ prevent bacterial biofilm formation. Heterologous expression of R. solanacearum or Xanthomonas oryzae pv. oryzae RuvC with plant secretion signal in tomato or rice confers resistance to bacterial wilt or bacterial blight disease, respectively. Plant chloroplast localized HJ resolvase monokaryotic chloroplast 1 (MOC1) which is structural similar to bacterial RuvC shows a strong inhibit effect on bacterial biofilm formation. Re-localization of SlMOC1 to apoplast in tomato roots leads to increase resistance to bacterial wilt. Our novel finding reveals a critical pathogenesis mechanism of R. solanacearum and provides an efficient biotechnology strategy to improve plant resistance to bacteria vascular disease.
Project description:Bacterial wilt caused by Ralstonia solanacearum is a serious seed/soil borne disease that causes severe yield and quality losses in many plants. In order to understand the change in genome expression of inculated plants, microarray analysis were performed.
Project description:Ralstonia solanacearum causes disease in more than 200 plant species including bacterial wilt of tomatoes and brown rot of potatoes. This bacterium is a soilborne and waterborne pathogen, with a worldwide distribution and is on the EPPO A2 list of quarantine pathogens. ln the UK, the bacterium is present in the rivers, but its prevalence depends on the season; it is highly abundant in the summer and undetectable during winter. To survive the cold winter temperatures, R. solanacearum overwinters inside plants growing alongside the rivers such as Solanum dulcamara. Interestingly, this plant species doesn’t show bacterial wilt symptoms. To understand genomic differences with susceptible hosts, we assembled the genome using Oxford Nanopore Technologies and Illumina sequencing. We have used the mRNA-Seq used for de-novo annotation to assess the expression of selected PRRs in roots, stem, leaves, flowers and berries.