Project description:Mitochondrial DNA (mtDNA) in budding yeast is biparentally inherited, but colonies rapidly lose one type of parental mtDNA, becoming homoplasmic. Therefore, hybrids between different yeast species possess two homologous nuclear genomes, but only one type of mitochondrial DNA. We hypothesise that the choice of mtDNA retention is influenced by its contribution to hybrid fitness in different environments, and that the allelic expression of the two nuclear sub-genomes is affected by the presence of different mtDNAs in hybrids. Here, we crossed Saccharomyces cerevisiae with S. uvarum under different environmental conditions and examined the plasticity of the retention of mtDNA in each hybrid.
Project description:Mitochondrial DNA (mtDNA) in budding yeast is biparentally inherited, but colonies rapidly lose one type of parental mtDNA, becoming homoplasmic. Therefore, hybrids between different yeast species possess two homologous nuclear genomes, but only one type of mitochondrial DNA. We hypothesise that the choice of mtDNA retention is influenced by its contribution to hybrid fitness in different environments, and that the allelic expression of the two nuclear sub-genomes is affected by the presence of different mtDNAs in hybrids. Here, we crossed Saccharomyces cerevisiae with S. uvarum under different environmental conditions and examined the plasticity of the retention of mtDNA in each hybrid.
Project description:To identify mutations that occurred in the nuclear and mitochondrial DNA of the yeast subjected to mtDNA base editing or Mito-BE screen, we performed whole-genome sequencing of cultured yeast cells after isolation of mitochondrial DNA.
Project description:we designed a CRISPR-based chromosome-doubling technique to construct an artificial diploid Escherichia coli cell. The stable diploid E. coli was confirmed by quantitative PCR and third-generation genome sequencing.
Project description:Temperature is key for biological activities, but its role in meiotic recombination processes is less known. Here, we uncovered the patterns of meiotic recombination by monitoring the double strands DNA breaks in diploid strain ZK5 cells cultured at 14ºC, 30ºC, and 37ºC.
Project description:<p> Human disorders of mitochondrial oxidative phosphorylation (OXPHOS) represent a devastating collection of inherited diseases. These disorders impact at least 1:5000 live births, and are characterized by multi-organ system involvement. They are characterized by remarkable locus heterogeneity, with mutations in the mtDNA as well as in over 77 nuclear genes identified to date. It is estimated that additional genes may be mutated in these disorders. </p> <p>To discover the genetic causes of mitochondrial OXPHOS diseases, we performed targeted, deep sequencing of the entire mitochondrial genome (mtDNA) and the coding exons of over 1000 nuclear genes encoding the mitochondrial proteome. We applied this 'MitoExome' sequencing to 124 unrelated patients with a wide range of OXPHOS disease presentations from the Massachusetts General Hospital Mitochondrial Disorders Clinic. </p> <p>The 2.3Mb targeted region was captured by hybrid selection and Illumina sequenced with paired 76bp reads. The total set of 1605 targeted nuclear genes included 1013 genes with strong evidence of mitochondrial localization from the MitoCarta database, 377 genes with weaker evidence of mitochondrial localization from the MitoP2 database and other sources, and 215 genes known to cause other inborn errors of metabolism. Approximately 88% of targeted bases were well-covered (>20X), with mean 200X coverage per targeted base. </p>
Project description:Nuclear and mitochondrial organelles must maintain a communication system. Loci on the mitochondrial genome were recently reported to interact with nuclear loci. To determine whether this is part of a DNA based communication system we used genome conformation capture to map the global network of DNA-DNA interactions between the mitochondrial and nuclear genomes (Mito-nDNA) in Saccharomyces cerevisiae cells grown under three different metabolic conditions. The interactions that form between mitochondrial and nuclear loci are dependent on the metabolic state of the yeast. Moreover, the frequency of specific mitochondrial - nuclear interactions (i.e. COX1-MSY1 and Q0182-RSM7) showed significant reductions in the absence of mitochondrial encoded reverse transcriptase machinery. Furthermore, these reductions correlated with increases in the transcript levels of the nuclear loci (MSY1 and RSM7). We propose that these interactions represent an inter-organelle DNA mediated communication system and that reverse transcription of mitochondrial RNA plays a role in this process.
Project description:Nuclear and mitochondrial organelles must maintain a communication system. Loci on the mitochondrial genome were recently reported to interact with nuclear loci. To determine whether this is part of a DNA based communication system we used genome conformation capture to map the global network of DNA-DNA interactions between the mitochondrial and nuclear genomes (Mito-nDNA) in Saccharomyces cerevisiae cells grown under three different metabolic conditions. The interactions that form between mitochondrial and nuclear loci are dependent on the metabolic state of the yeast. Moreover, the frequency of specific mitochondrial - nuclear interactions (i.e. COX1-MSY1 and Q0182-RSM7) showed significant reductions in the absence of mitochondrial encoded reverse transcriptase machinery. Furthermore, these reductions correlated with increases in the transcript levels of the nuclear loci (MSY1 and RSM7). We propose that these interactions represent an inter-organelle DNA mediated communication system and that reverse transcription of mitochondrial RNA plays a role in this process. Genome Conformation Capture (GCC) has been performed on exponentially growing Saccharomyces cerevisiae cultures in glucose containing media. Paired end sequencing on an Illumina Genome Analyser was performed before the sequences were analysed by the propieatry software Topography 1.19. Inter- and intra- chromosomal interactions were mapped onto the S. cerevisiae S288 genome scaffold.
Project description:In the search for renewable sources of energy, bioethanol stands out as a benchmark biofuel because its production is based on a proven technological platform. Bioethanol is produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (~2 SNPs per kilobase), and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, and appear to reflect ectopic homologous recombination between repetitive DNA sequences. Despite the complex karyotype of JAY270, this diploid, when sporulated, had a high frequency of viable spores (~93%). Crosses of haploids derived from JAY270 to a haploid of the unrelated laboratory strain S288c also resulted in diploids that had good spore viability (75-95%). Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis and spore viability, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures that may be associated with a fitness benefit. We also explore features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high cell mass production and fermentation kinetics, high temperature growth and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.