Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
| 2533916 | ecrin-mdr-crc
Project description:Whole Genome sequencing of Klebsiella pneumoniae bacteriophages
Project description:Multiomics of faecal samples collected from individuals in families with multiple cases of type 1 diabetes mellitus (T1DM) over 3 or 4 months. Metagenomic and metatranscriptomic sequencing and metaproteomics were carried out, as well as whole human genome sequencing. Phenotypic data is available.
2017-10-19 | MSV000081630 | MassIVE
Project description:Whole genome sequenes of Bacteriophages from Tabanus par
Project description:Multiomics of faecal samples collected from individuals in families with multiple cases of type 1 diabetes mellitus (T1DM) over 3 or 4 months. Metagenomic and metatranscriptomic sequencing and metaproteomics were carried out, as well as whole human genome sequencing. Phenotypic data is available.
Project description:The ability of bacteriophages to kill bacteria is well known, as is their potential use as alternatives to antibiotics. As such, bacteriophages reach high doses locally through infection of their bacterial host in the human body. In this study we assessed the gene expression profile, by means of whole transcriptome analysis, of peripheral blood mononuclear cells (PBMCs) derived from a healthy human donor and stimulated with a Pseudomonas aeruginosa phage PNM lysate, or P. aeruginosa strain 573. The PBMCs were stimulated for 20 h, followed by lysis of the cells and RNA extraction. In total, three stimulations were performed: control sample (i.e. not stimulated), P. aeruginosa phage PNM lysate and P. aeruginosa strain 573. Each stimulation was conducted in triplicate. The transcriptome analysis showed that the phage induce a clear immunological responses. Both pro- and anti-inflammatory genes were up-regulated in the PBMCs in the presence of the phage or its bacterial host. Our results indicate that bacteriophages might play a bigger role in the immune response then previously described and might have a broader effect than the clearing of bacterial infections alone, such as the suppression of the immune response to benefit their own survival.
Project description:The proteome of the SS13 isolate assigned to the Chromatiaceae family was assessed by shotgun proteomics using a pan-proteomics database for the genus Rheinheimera and a whole genome sequencing -derived database.
Project description:Staphylococcus aureus causes disease in humans and a wide array of animals. Of note, S. aureus mastitis of ruminants, including cows, sheep and goats, results in major economic losses worldwide. Extensive variation in genome content exists among S. aureus pathogenic clones. However, the genomic variation among S. aureus strains infecting different animal species has not been well examined. To investigate variation in the genome content of human and ruminant S. aureus we carried out whole genome PCR scanning (WGPS), comparative genomic hybridizations (CGH), and directed DNA sequence analysis of strains of human, bovine, ovine, and caprine origin. Extensive variation in genome content was discovered including host- and ruminant-specific genetic loci. Ovine and caprine strains were genetically allied whereas bovine strains were heterogenous in gene content. As expected, mobile genetic elements such as pathogenicity islands and bacteriophages contributed to the variation in genome content between strains. However, remarkably, most host-specific differences were restricted to regions of the conserved core genome, which contained allelic variation in genes encoding proteins of known and unknown function. Many of these proteins are predicted to be exported and could play a role in host-pathogen interactions. These data suggest that diversification of the core genome may be more important than acquisition of novel genes for S. aureus host-adaptation. The host-specific determinants identified by the whole-genome approaches adopted in the current study represent excellent targets for studies of the evolution and molecular basis of S. aureus host specificity. Keywords: Strain vs strain