Project description:Nascent RNA-sequencing tracks transcription at nucleotide resolution. The genomic distribution of engaged transcription complexes, in turn, uncovers functional genomic regions. Here, we provide analytical steps to (1) identify transcribed regulatory elements de novo genome-wide, (2) quantify engaged transcription complexes at enhancers, promoter-proximal regions, divergent transcripts, gene bodies, and termination windows, and (3) measure distribution of transcription machineries and regulatory proteins across functional genomic regions. This protocol tracks engaged transcription complexes across functional genomic regions demonstrated in human K562 erythroleukemia cells. For complete details on the use and execution of this protocol, please refer to Vihervaara et al. (2021).
Project description:MS data submission for: Rate-limiting steps in butyrate production in Clostridium butyricum strain CBM588 identified by whole genome and proteome analyses.
Deposition includes raw files in .d format, picked .mzML files and zipped FragPipe results files
Project description:Fundamental cellular processes including replication, transcription, and repair rely on both an adequate nucleotide supply and sufficient availability of new histones. Chromatin disassembly and reassembly is crucial to maintain genome stability, and is regulated by the orderly engagement of histones with a series of histone chaperones that guide newly synthesized histones from ribosomes to DNA. Although the synthesis of nucleotides and the histone proteins are the two major biosynthetic processes to complete the formation of chromatin, our knowledge about the coordination of these processes is limited. Phosphoribosyl pyrophosphate synthetases (PRPSs) catalyze the rate-limiting step in the nucleotide biosynthesis pathway. PRPS enzymes form a complex with PRPS-associated proteins (PRPSAPs). In the present study, we discover that PRPS-PRPSAP enzyme complex are part of the histone chaperone network involving HSP70/90, NASP, HAT1/RBBP7 and importin-4 to regulate chromatin assembly. We show PRPS enzymes are essential not only for nucleotide biogenesis, but together with PRPSAP also play a key role in the heterodimerization of H3-H4 and posttranslational modification of nascent histones, early steps in the process of histone maturation. Depletion of PRPS proteins leads to limited histone availability and therefore to impaired chromatin assembly. Our discovery bridges nucleotide metabolism and chromatin regulation and provides first evidence on how nucleotide biogenesis and chromatin dynamics work in synchrony.
Project description:Deep sequencing now provides detailed snapshots of ribosome occupancy on mRNAs. We leverage these data to parameterize a computational model of translation, keeping track of every ribosome, tRNA, and mRNA molecule in a yeast cell. We determine the parameter regimes in which fast initiation or high codon bias in a transgene increases protein yield and infer the initiation rates of endogenous Saccharomyces cerevisiae genes, which vary by several orders of magnitude and correlate with 5' mRNA folding energies. Our model recapitulates the previously reported 5'-to-3' ramp of decreasing ribosome densities, although our analysis shows that this ramp is caused by rapid initiation of short genes rather than slow codons at the start of transcripts. We conclude that protein production in healthy yeast cells is typically limited by the availability of free ribosomes, whereas protein production under periods of stress can sometimes be rescued by reducing initiation or elongation rates.
Project description:Transcription initiation is a highly dynamic and tightly regulated process involving the coordinated action of transcription factors, chromatin remodelers, and RNA polymerase which determine where and when transcription begins. Accurately mapping and quantifying transcription start sites (TSSs) from nascently transcribed RNAs remains a key area of interest, as it provides critical insights into transcription dynamics. Here, we combined transient transcriptome sequencing with transcription start site sequencing (TT-TSS-seq) to accurately map and quantify transcription initiation sites from nascent transcripts. Since transient metabolic labelling yields low-input RNA, we optimized the TSS-seq protocol to enhance sensitivity and accuracy. Specifically, we refined enzymatic reactions for decapping and RNA ligation and incorporated 5' oligonucleotides including unique molecular identifiers (UMIs) and barcodes to enable accurate quantification and sample multiplexing. The TT-TSS-seq approach detected transcription initiation of unstable transcripts, such as enhancer RNAs. Moreover, we identified that a large fraction of genes use multiple transcription initiation sites, yet often produce only a single stable transcript. Overall, TT-TSS-seq provides precise mapping and quantification of transcription initiation sites, offering new insights into transcriptional dynamics and expanding the toolkit for studying gene regulation.
Project description:EXD2 is a recently identified exonuclease that cleaves RNA and DNA in double-stranded (ds) forms. It thus serves as a model system for investigating the similarities and discrepancies between exoribonuclease and exodeoxyribonuclease activities and for understanding the nucleic acid (NA) unwinding-degradation coordination of an exonuclease. Here, using a single-molecule fluorescence resonance energy transfer (smFRET) approach, we show that despite stable binding to both substrates, EXD2 barely cleaves dsDNA and yet displays both exoribonuclease and exodeoxyribonuclease activities toward RNA-DNA hybrids with a cleavage preference for RNA. Unexpectedly, EXD2-mediated hybrid cleavage proceeds in a discrete stepwise pattern, wherein a sudden 4-bp duplex unwinding increment and the subsequent dwell constitute a complete hydrolysis cycle. The relatively weak exodeoxyribonuclease activity of EXD2 partially originates from frequent hybrid rewinding. Importantly, kinetic analysis and comparison of the dwell times under varied conditions reveal two rate-limiting steps of hybrid unwinding and nucleotide excision. Overall, our findings help better understand the cellular functions of EXD2, and the cyclic coupling between duplex unwinding and exonucleolytic degradation may be generalizable to other exonucleases.
Project description:Fundamental cellular processes including replication, transcription, and repair rely on both an adequate nucleotide supply and sufficient availability of new histones. Chromatin disassembly and reassembly is crucial to maintain genome stability, and is regulated by the orderly engagement of histones with a series of histone chaperones that guide newly synthesized histones from ribosomes to DNA. Although the synthesis of nucleotides and the histone proteins are the two major biosynthetic processes to complete the formation of chromatin, our knowledge about the coordination of these processes is limited. Phosphoribosyl pyrophosphate synthetases (PRPSs) catalyze the rate-limiting step in the nucleotide biosynthesis pathway. PRPS enzymes form a complex with PRPS-associated proteins (PRPSAPs). In the present study, we discover that PRPS-PRPSAP enzyme complex are part of the histone chaperone network involving HSP70/90, NASP, HAT1/RBBP7 and importin-4 to regulate chromatin assembly. We show PRPS enzymes are essential not only for nucleotide biogenesis, but together with PRPSAP also play a key role in the heterodimerization of H3-H4 and posttranslational modification of nascent histones, early steps in the process of histone maturation. Depletion of PRPS proteins leads to limited histone availability and therefore to impaired chromatin assembly. Our discovery bridges nucleotide metabolism and chromatin regulation and provides first evidence on how nucleotide biogenesis and chromatin dynamics work in synchrony.
Project description:RNA sequences are expected to be identical to their corresponding DNA sequences. Advances in technologies have enabled deep sequencing of nucleic acids that uncovered exceptions to the one-to-one relationship between DNA and RNA sequences. Previously in human cells, post-transcriptional RNA editing was the only known mechanism that changes RNA sequences from the underlying DNA sequences. Here, we sequenced nascent RNA and found all 12 types of RNA-DNA differences. Using various experimental analyses, we validated this finding. Our results showed that sequences of nascent RNAs within 40 nucleotides of the exit channel of RNA polymerase II already differ from the corresponding DNA sequences. These RNA-DNA differences are mediated by RNA processing steps closely coupled with transcription and not by known deaminase-mediated RNA editing mechanisms nor during NTP incorporation by Pol II. This finding identifies sequence substitution as part of co-transcriptional RNA processing. We sequenced nascent RNA using global run-on sequencing, GRO-seq from human B-cells from two individuals and a variant of the GRO-seq procedure, known as precision run-on sequencing, PRO-seq. The RNAs are prepared after a short run-on assay performed with isolated nuclei in the presence of Br-UTP. The isolated RNAs are base hydrolyzed to ~100 nucleotides and affinity purified with anti-BrU beads three times at each successive step of preparing the RNAs for orientation-specific sequencing using Illumina technology. The 5M-bM-^@M-^Y ~half of each sequence represents nascent RNA made in the cell and the 3M-bM-^@M-^Y ~half represents sequences made in vitro during the run-on reaction. The precision variation, PRO-seq, incorporates one or at most a few biotin-labeled nucleoside triphosphates during the run-on, and sequencing from the 3M-bM-^@M-^Y end of this affinity purified, nascent RNA maps the cellular location of engaged polymerases with near single nucleotide precision. We obtained ~ 100 million 100-nucleotide uniquely mapped GRO-seq reads from B-cells of two individuals. For one subject, we also carried out pGRO-seq and obtained 60 million uniquely mapped reads. In addition, we sequenced ~135 million uniquely mapped RNA-seq reads, and the corresponding DNA of the two individuals to 30X and 60X coverage. Additionally, we isolated and sequenced nascent RNA with an alternate method described by Wuarin and Schibler (1994) in order to compare chromatin-bound RNA to the very nascent RNA from PRO-seq. We obtained ~190 million uniquely mapped reads from chormatin-bound RNA-seq.