Project description:Citrobacter braakii and Citrobacter freundii are Gram-negative opportunistic pathogens associated with many infectious diseases, including septicemia, in humans and animals. Here, we report the draft genome sequences of seven C. braakii strains and one C. freundii strain isolated from Canadian wastewater treatment facilities.
Project description:The spread of carbapenemase-producing Enterobacterales (CPE) is emerging as a significant clinical concern in tertiary hospitals and in particular, long-term care facilities with deficiencies in infection control. This study aims to evaluate an advanced matrix-assisted laser desorption/ionization mass spectrometry (A-MALDI) method for the identification of carbapenemases and further discrimination of their subtypes in clinical isolates. The A-MALDI method was employed to detect CPE target proteins. Enhancements were made to improve detectability and mass accuracy through the optimization of MALDI-TOF settings and internal mass calibration. A total of 581 clinical isolates were analyzed, including 469 CPE isolates (388 KPC, 51 NDM, 40 OXA, and 2 GES) and 112 carbapenemase-negative isolates. Clinical evaluation of the A-MALDI demonstrated 100% accuracy and precision in identifying all the collected CPE isolates. Additionally, A-MALDI successfully discriminated individual carbapenemase subtypes (KPC-2 or KPC-3/4; OXA-48 or OXA-181 or OXA-232; GES-5 or GES-24) and also differentiated co-producing carbapenemase strains (KPC & NDM; KPC & OXA; KPC & GES; NDM & OXA), attributed to its high mass accuracy and simultaneous detection capability. A-MALDI is considered a valuable diagnostic tool for accurately identifying CPE and carbapenemase’s subtypes in clinical isolates. It may also aid in selecting appropriate antibiotics for each carbapenemase subtype. Ultimately, we expect that the A-MALDI method will contribute to preventing the spread of antibiotic resistance and improving human public health.
Project description:Citrobacter braakii (C. braakii) is an anaerobic, gram-negative bacterium that has been isolated from the environment, food, and humans. Infection by C. braakii has been associated with acute mucosal inflammation in the intestine, respiratory tract, and urinary tract. However, the pathogenesis of C. braakii in the gastric mucosa has not yet been clarified. In this study, the bacterium was detected in 35.5% (61/172) of patients with chronic gastritis (CG) and was closely associated with the severity of mucosal inflammation. Citrobacter braakii P1 isolated from a patient with CG exhibited urease activity and acid resistance. It contained multiple secretion systems, including a complete type I secretion system (T1SS), T5aSS and T6SS. We then predicted the potential pilus-related adhesins. Citrobacter braakii P1 diffusely adhered to AGS cells and significantly increased lactate dehydrogenase (LDH) release; the adhesion rate and LDH release were much lower in HEp-2 cells. Strain P1 also induced markedly increased mRNA and protein expression of IL-8 and TNF-α in AGS cells, and the fold increase was much higher than that in HEp-2 cells. Our results demonstrate proinflammatory and cytotoxic role of C. braakii in gastric epithelial cells, indicating the bacterium is potentially involved in inducing gastric mucosa inflammation.
Project description:Citrobacter braakii is an opportunistic pathogen that induces aquatic infections in fish and turtles. In this study, a bacteriophage that infects C. braakii, named vB_CbrM_HP1, was isolated from sewage. This phage belongs to Myoviridae family, Ounavirinae subfamily, Mooglevirus genus. We also used the phage to treat crucian carp infection caused by C. braakii for the first time. vB_CbrM_HP1 was relatively stable at temperatures ranging from 4 to 60°C and pH values ranging from 3 to 11 but float slightly. When the multiplicities of infection (MOI) was 0.0001, the titer reached a maximum of 4.20 × 1010 PFU/ml. As revealed from the results of whole genomic sequence analysis, the total length of vB_CbrM_HP1 was 89335 bp, encoding 135 ORFs, 9 of which were <75% similar to the known sequences in NCBI. The phage vB_CbrM_HP1 showed a highly efficient bactericidal effect against C. braakii both in vitro and in vivo. In vitro, vB_CbrM_HP1 was capable of effectively killing bacteria (the colony count decreased by 4.7 log units at 5 h). In vivo, administration of vB_CbrM_HP1 (1 × 109 PFU) effectively protected crucian carp against fatal infection caused by C. braakii. Phage treatment reduced the levels of inflammatory factors. All these results demonstrated the potential of vB_CbrM_HP1 as an alternative treatment strategy for infections caused by C. braakii.