Project description:The study aims at deciphering the response of Phaeocystis antarctica under iron limitation and iron supplementation at a transcriptomic level.
Project description:transcriptomic study of the impact of iron toxicity on rice plant (Oryza sativa L.; cv ‘I Kong Pao’ ) after short term (3 days) or long term (3 weeks) exposure to ferrous iron (125 ppm). Twenty five days old rice seedlings were exposed to 0 or 125 mg/L ferrous iron for 3 days and 3 weeks in hydroponic culture. Comparison between control and iron stressed plants were done at the shoot and the root levels. The assays were replicated twice on two independent plant cultures.
Project description:transcriptomic study of the impact of iron toxicity on rice plant (Oryza sativa L.; cv M-bM-^@M-^XI Kong PaoM-bM-^@M-^Y ) after short term (3 days) or long term (3 weeks) exposure to ferrous iron (125 ppm). Twenty five days old rice seedlings were exposed to 0 or 125 mg/L ferrous iron for 3 days and 3 weeks in hydroponic culture. Comparison between control and iron stressed plants were done at the shoot and the root levels. The assays were replicated twice on two independent plant cultures. 8 samples, Two-condition experiment, control (0 ppm ferrous iron) vs. iron treated (125 ppm ferrous iron). Biological replicates: 2 replicates for comparison shoot 3 days of stress, root 3 days of stress, shoot 3 weeks of stress and root 3 weeks of stress.
Project description:Iron accumulation in microglia has been observed in Alzheimer’s disease and other neurodegenerative disorders and is thought to contribute to disease progression through various mechanisms including neuroinflammation. To study the interaction between iron accumulation and inflammation, we treated human induced pluripotent stem cell-derived microglia (iPSC-MG) with an increasing concentration of iron, in combination with inflammatory stimuli such as interferon gamma and amyloid β, and performed RNA sequencing.