Project description:5 leaves old rice plantlets were infected with Magnaporthe grisea spores and zero, two hours and twenty four houres after infection samples were collected
Project description:Although Cochliobolus miyabeanus is an important fungal leaf pathogen on rice plants worldwide, it is largely neglected by molecular plant phytopathologists. To shed new light on the molecular and genetic basis of the rice – C. miyabeanus interaction, we compared the transcriptome of rice leaves 12h post inoculation to uninfected leaves. Even though usable sources of resistance against brown spot disease caused by C. miyabeanus are scarce, silicon application emerges as a sustainable protection strategy. Many articles report the beneficial effect of silicon on brown spot resistance. however the underlying mechanisms remain largely unclear. The influence of silicon application on the transcriptome of healthy and infected rice leaves 12hpi was compared as well in an attempt to disentangle the modulation of silicon-induced brown spot resistance.
Project description:In this study, we examined the transcriptome dynamics within the matured fully expanded rice leaf and used strand-specific RNA sequencing to generate a comprehensive transcriptome dataset for the mature rice leaf. The rice Nipponbare (Oryza sativa l. japonica) seedlings were grown in the greenhouse. About 20 days after planting, the fully opened 4th leaves was cut it into seven 3-cm segments, from bottom to tip and labeled as sections 1 to 7, respectively. The tissues were immediately frozen in liquid nitrogen for total RNA extraction. Two biological replicates were collected for each section. Note: All samples in SRA were assigned the same sample accession (SRS685294). This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:Although Cochliobolus miyabeanus is an important fungal leaf pathogen on rice plants worldwide, it is largely neglected by molecular plant phytopathologists. To shed new light on the molecular and genetic basis of the rice M-bM-^@M-^S C. miyabeanus interaction, we compared the transcriptome of rice leaves 12h post inoculation to uninfected leaves. Even though usable sources of resistance against brown spot disease caused by C. miyabeanus are scarce, silicon application emerges as a sustainable protection strategy. Many articles report the beneficial effect of silicon on brown spot resistance. however the underlying mechanisms remain largely unclear. The influence of silicon application on the transcriptome of healthy and infected rice leaves 12hpi was compared as well in an attempt to disentangle the modulation of silicon-induced brown spot resistance. Comparison between C. miyabeanus- and mock-infected rice leaves 12h post inoculation. This study consist of a 2 x 2 factorial design (infected and non-infected; untreated and silicon-treated) in three biological replicates.
Project description:5 leaves old rice plantlets were infected with Magnaporthe grisea spores and zero, two hours and twenty four houres after infection samples were collected control and 2 hour were mixed and hybridized with chip besides control and twenty four hours were mixed and hybridized with another chip. Both chips were performed in duplicate
Project description:We characterized a rice (Oryza sativa L ssp. indica cultivar 3037) semi-dwarf mutant sd37, in which CYP96B4 gene (Cytochrome P450 96B subfamily) was identified as the target gene by map-based cloning and complementation test. A point mutation in CYP96B4 leads to a substitution of Thr to Lys in the SRS2 region. The sd37 leaves, panicles and seeds are all smaller compared with those of wild-type, and histological analysis showed that the decreased cell number was the main reason for the dwarf phenotype. We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up- and down- regulated genes during this process.
Project description:The profiling was conducted with the Rice 3'-Tiling 135k Microarray designed from 31,439 genes deposited at IRGSP, RAP2 database (http://rapdb.lab.nig.ac.jp). We have identified and characterized a T-DNA insert rice mutant (Osfuct) with loss of α1,3-fucosyltransferase function. Matrix-assisted laser desorption/ionization time-of-flight analyses of the N-glycan revealed the lack of α1,3-fucose in the N-glycan structure of rice Osfuct mutant. The mutant displayed the pleiotropic developmental defects such as diminished growth, shorter plant height, less number of tillers, shorter panicle lengths and internode, impaired anther and pollen development. In addition, the anther was curved, pollen grains shapes were shriveled, pollen viability and pollen number per anther was dramatically decreased in Osfuct mutant. The complementation test of Osfuct mutant clearly exhibited that the phenotype is caused by the loss of α1,3-fucosyltransferase function bescause complementation line is rescued. Transcriptome profiling data revealed that several genes essential in plant developmental processes were significantly altered in Osfuct mutant including protein kinases, transcription factors, genes involved in metabolism, genes related to protein synthesis and hypothetical proteins. Moreover, Osfuct mutant exhibited the enhanced salt insensitivity. Taken together, these findings demonstrated that Osfuct plays a critical role in growth, anther, pollen development and salt stress response.
Project description:The rice gene SUB1A-1 confers flooding tolerance restricting shoot growth during submergence. Rice with SUB1A also show more rapid recovery after submergence ends, but mechanisms by which SUB1A improves recovery from submergence had not been examined. In this study, the transcriptome was sequenced at five time points over a 24 hour submergence recovery period in near-isogenic rice genotypes with and without SUB1A.