Project description:Insects in Tenebrionidae have unique stress adaptations that allow them to survive temperature extremes. We report here a gene expression profiling of Microdera punctipennis, a beetle in desert region, to gain a global view of its environmental adaptations. A total of 48,158,004 reads were obtained by transcriptome sequencing, and the de novo assembly yielded 56,348 unigenes with an average length of 666 bp. Based on similarity searches with a cut-off E-value of 10(-5) against two protein sequence databases, 41,109 of the unigenes (about 72.96%) were matched to known proteins. An in-depth analysis of the data revealed a large number of genes were associated with environmental stress, including genes that encode heat shock proteins, antifreeze proteins, and enzymes such as chitinase, trehalose, and trehalose-6-phosphate synthase. This study generated a substantial number of M. punctipennis transcript sequences that can be used to discover novel genes associated with stress adaptation. These sequences are a valuable resource for future studies of the desert beetle and other insects in Tenebrionidae. Transcriptome analysis based on Illumina paired-end sequencing is a powerful approach for gene discovery and molecular marker development for non-model species.
Project description:Tanypus punctipennis Meigen, 1818 is an important bioindicator for freshwater ecosystems monitoring. Although COI barcode analyses have been performed on T. punctipennis, the mitogenome of this taxon has not been assembled and analyzed. Here, the complete mitogenome of T. punctipennis was sequenced and analyzed to confirm the systematic and phylogenetic history of this species. The mitogenome is 16,215 bp long with high A + T content, and consists of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a noncoding control region. The phylogenomic analysis supports monophyletic Tanypodinae and close relationship between T. punctipennis and Clinotanypus. Our results indicate that mitogenomes showed strong signals in phylogenetic reconstructions at the genus level of Tanypodinae.
Project description:Potential mosquito vectors of Dirofilaria immitis (Leidy) (Nematoda: Filarioidea), the causative agent of dog heartworm in the southeastern region of the United States, were collected with CDC light traps and gravid traps in seven counties in the state of Georgia, USA. The presence of D. immitis in these mosquitoes was detected by polymerase chain reaction using species-specific primers for the D. immitis surface or cuticular antigen. Overall, 1,574 mosquitoes of 13 species in seven genera were collected; 92% of the specimens were Aedes albopictus (Skuse), Aedes vexans (Meigen), or Anopheles punctipennis (Say). Ae. albopictus, An. punctipennis, and Anopheles crucians Wiedemann were positive for D. immitis DNA. Ae. albopictus had the highest maximum likelihood rate of infection (2.30%; 95% confidence interval [CI] = 1.15-4.00%) followed by An. crucians (1.38%: 95% CI = 0.04-6.93%), and An. punctipennis (0.85%: 95% CI 0.03-4.29%). The detection of D. immitis DNA in the heads and thoraxes of Ae. albopictus (0.40%; 95% CI = 0.12-2.02%) indicates that these mosquitoes can support the development of D. immitis to the infective stage 3 larvae.
Project description:BackgroundThe malaria mosquito Anopheles punctipennis, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmodium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for this species. Anopheles punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear.MethodsIn this study, ITS2 sequences were obtained from 276 An. punctipennis specimens collected in the eastern and midwestern United States and a simple and robust Restriction Fragment Length Polymorphism approach for species identification was developed. The maximum-likelihood phylogenetic tree was constructed based on ITS2 sequences available through this study and from GenBank for 20 species of Anopheles.ResultsThe analysis demonstrated a consistent ITS2 sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In this study, An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group.ConclusionsThis study developed molecular tools based on ITS2 sequences for the malaria vector An. punctipennis and clarified the phylogenetic position of the species within the Maculipennis group.
Project description:Insects have developed a complex network of enzymatic antioxidant systems for handling reactive oxygen species (ROS) generated during stress. Superoxide dismutases (SODs) play a determinant role in balancing ROS in insect. However, studies devoted to SODs functions in insects under cold stress are limited. In the present study, we attempted to identify and characterize a mitochondrial manganese SOD (mMn-SOD) from the desert beetle Micordera punctipennis (denoted as MpmMn-SOD) and explore its protective effects on bacteria cells under cold stress. MpmMn-SOD is composed of 202 amino acids with conserved domains required for metal ions binding and enzyme activity. RT-qPCR experiments revealed that the expression of MpmMn-SOD was ubiquitous but tissue-specific and was induced by cold stress. An E. coli (BL21) system was applied to study the function of MpmMn-SOD. The MpmMn-SOD gene was cloned into the prokaryotic expression vector pET-32a to generate a recombinant plasmid pET-32a(MpmMn-SOD). After transformation of the plasmid into E. coli BL21, the fusion protein Trx-His-MpmMn-SOD was overexpressed and identified by SDS-PAGE and Western blotting. Antioxidant activity assay showed that the death zones of the transformed bacteria BL21 (pET32a-mMn-SOD) were smaller in diameter than the control bacteria BL21 (pET32a). Survival curves under -4 °C showed that BL21 (pET32a-mMn-SOD) had significant enhanced cold resistance compared to BL21 (pET32a). Its SOD activity under -4 °C had a significant negative correlation (r = - 0.995) with superoxide anion O2 •- content. Accordingly, under cold stress BL21 (pET32a-mMn-SOD) had lower electric conductivity and malondialdehyde (MDA) content than BL21 (pET32a). Taken together, our results showed that cold stress stimulated the expression of MpmMn-SOD in M. punctipennis. The E. coli cells that overexpress MpmMn-SOD increase their resistance to cold stress by scavenging ROS, and mitigate potential cell damage caused by ROS under cold conditions.