Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:The mechanistic basis of resistance of vertebrate populations to contaminants, including Atlantic tomcod from the Hudson River (HR) to polychlorinated biphenyls (PCBs), is unknown. HR tomcod exhibited variants in the aryl hydrocarbon receptor 2 (AHR2) that were nearly absent elsewhere. In ligand-binding assays, AHR2-1 protein (common in the HR) was impaired as compared to widespread AHR2-2 in binding TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) and in driving expression in reporter gene assays in AHR-deficient cells treated with TCDD or PCB126. We identified a six-base deletion in AHR2 as the basis of resistance and suggest that the HR population has undergone rapid evolution, probably due to contaminant exposure. This mechanistic basis of resistance in a vertebrate population provides evidence of evolutionary change due to selective pressure at a single locus.