Project description:Investigation of whole genome gene expression level changes in Moyo-S and Moyo-R strains of Aedes aegypti after oral infection of serotype 1, serotype 2, serotype 3 and serotype 4 of dengue virus The Moyo-S is highly suscpetible to dengue infection whereas Moyo-R is refractory to the dengue infection. They have been investigated in our previous studies incluidng Behura et al. (2011). PLoS neglected tropical diseases 5 (11), e1385; and Chauhan et al. (2012). PloS one 7 (10), e47350.
Project description:Arthropod-borne viruses (arboviruses) represent a threat to global public health, especially in the tropical and subtropical regions of the world. More than 150 arboviruses can infect humans; they cause mainly febrile illness, although hemorrhagic complications and diseases affecting the central nervous system (SNC) can also be observed. Arboviruses represent a threat to Brazil and, therefore, a permanent surveillance of these viruses is required to timely reduce the risk of epidemic outbreaks. The Brazilian Amazon region is where the highest number of arboviruses has been detected in the world. Besides, malaria is also endemic in the Amazon region, with a significant predominance of Plasmodium vivax. It is often difficult to differentiate between malaria and arboviral diseases, as they share similar clinical features and laboratory findings, mainly undifferentiated fever. This study aimed to estimate possible viral etiology in patients with febrile syndrome negative for Plasmodium infection, in the Brazilian Amazon. We initially analyzed serum samples of 124 participants with a DNA microarray platform designed for the detection of arboviruses and viruses transmitted by small mammals, but no virus was detected. Then, the serum samples of 76 participants were analyzed with a deep New Generation Sequencing, which showed evidence of the presence of only one arbovirus, the Zika virus in only one pool of 9 serum samples. This result is in contrast with our hypothesis, showing that arboviruses are not frequent in suspected malaria cases in Manaus, Brazil. Other viruses instead of arboviruses were found in this study. Primate erythrovirus 1 was the virus most frequently found virus in the suspected malaria patients, followed by Enterobacteria phage lambda. Besides, we detected, in a lower frequency, the Pegivirus C. In addition to the exogenous viruses, we also detected human endogenous retrovirus in all pools. Due to the high number of viruses that are important in the differential diagnosis of malaria, cost-effective and simple high throughput methods are required, helping molecular surveillance of misdiagnosed viral infections. Further studies with more robust sample sizes in other areas in the Amazon are needed.
Project description:This study aims to understand the characteristics and diversification of Dengue specific immunoglobulin repertoires after different immunization strategies in mouse. We propose two different immunization strategies in dengue vaccine development. One is tetravalent strategy, which pre-mixed four serotype dengue DNA vaccine and administrated four times. The other one is sequential strategy, which sequentially administrated four time, each serotype vaccine for each dose as sequences of Den1, Den2, Den3 and Den4.
Project description:To study the role of Dengue virus serotype 4 NS1 in modulation of host cell transcriptome we performed gene expression profiling using data obtained from RNA- sequencing of total RNA from 3 different samples: Huh7 cells (no transfection), Huh7 cells transfected with pTracer-SV40 empty vector and Huh7 cells transfected with pTracer-SV40 encoding dengue virus serotype 4 NS1 (pDENV4 NS1).
Project description:Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. Background Dengue is a mosquito-borne viral infection causing a major public health problem globally. Dengue virus (DENV) is the causative agent of dengue fever (DF) and dengue hemorrhagic fever (DHF) and includes four distinct serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). DENV-2 and DENV-3 have been associated with severe dengue disease, consequently, laboratory testing for DENV is needed to confirm the diagnosis of DENV infection, serotype and to differentiate dengue from other febrile tropical illnesses. In addition, surveillance of mosquitoes infected with DENV is needed to monitor the infection rates within vector mosquito populations harboring specific serotype to provide an early warning sign to predict epidemics. Results In this work we have applied microarray analysis to simultaneously determine the serotype of multiple RNA samples from human or mosquitoes. The proposed microarray method can be used for i) rapid and reliable dengue diagnosis; ii) serotyping and iii) surveillance of mosquitoes infected with dengue. These microarrays were useful to confirm the presence of DENV-2 in 94 serum samples, DENV-3 in three samples from Juchitan, Oaxaca and one case from Juchitan, Oaxaca contained DENV-2 and -3. Moreover by using these microarrays we also determined DENV in pools of gravid females mosquitoes collected in several sites of nineteen Mexican states in 2005. Mosquito pools from 31 cities in the states of Yucatan, Campeche, Tabasco, Chiapas, Veracruz, Oaxaca, Guerrero, Tamaulipas and Colima were infected with DENV-2, six cities in Yucatán, Tabasco, Morelos, Tamaulipas, Colima, and Nayarit with DENV-1, three from Tabasco, Veracruz and Oaxaca with DENV 3 and two with two serotypes simultaneously (Ciudad Mante with DENV-1 and DENV-2, and Tavela with DENV-2 and DENV-3). Conclusion Here we show the success of applying microarrays assay to provide a consistently robust qualitative detection of dengue serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) in serum samples from patients or in pools of gravid female mosquitoes collected in the field of nineteen Mexican states. Interestingly, we did not detect any mosquito or serum sample containing DENV-4.