Project description:Earthworms show a wide spectrum of regenerative potential with certain species like Eisenia fetida, a terrestrial redworm, capable of regenerating more than two-thirds of their body while other closely related species, such as Paranais litoralis seem to have lost this ability. Earthworms belong to the phylum annelida, in which the genomes of the marine oligochaete Capitella telata, and the freshwater leech Helobdella robusta have been sequenced and studied. Herein, we report the de novo assembled transcriptome of Eisenia fetida (Indian isolate), along with an analysis of the transcriptomic changes during regeneration. We also used de novo assembled RNAseq data to identify genes that are differentially expressed during regeneration, both in the newly regenerating cells and in the adjacent tissue.
2018-07-03 | GSE101310 | GEO
Project description:Drosophila montium Species Group Genomes Project
Project description:Co-expression of genes that physically cluster together is a common characteristic of eukaryotic transcriptomes. Identifying these groups of co-expressed genes is important to the functional annotation of genomes and understanding the evolutionary fates of the clustered genes. We used microarrays to measure gene expression in seven closely related Drosophila species, to identify domains clusters within a species of Drosophila (D. simulans) and that are evolving among species in the D. melanogater subgroup. Keywords: species comparison
2007-05-23 | GSE7873 | GEO
Project description:Gila robusta species complex phylogenetics
Project description:The model organism Encyclopedia of DNA Elements project (modENCODE) has produced a comprehensive annotation of D. melanogaster transcript models based on an enormous amount of high-throughput experimental data. However, some transcribed elements may not be functional, and technical artifacts may lead to erroneous inference of transcription. Inter-species comparison provides confidence to predicted annotation, since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function. We have performed RNA-Seq and CAGE-Seq experiments on more than 80 samples from multiple tissues and stages of 15 Drosophila species, including 8 previously unsequenced genomes. We have found strikingly conserved sequence, expression, and splicing for the vast majority of transcript models in modENCODE annotation (e.g. 99% exons of coding sequences (CDS), 88% exons of untranslated regions (UTR), and 87% splicing events), indicating that the transcriptome annotation is of very high quality. We also describe dynamic transcriptome evolution within the Drosophila genus, including conserved promoter structure, labile positions of transcription start sites, and rapidly evolving RNA-editing events. We demonstrate how this phylogenetic approach to DNA element validation will prove useful in the annotation of other high priority genomes, especially for genomes that are less compact than Drosophila (e.g. the vast majority of vertebrate genomes). Refer to individual Series (listed below).
Project description:The model organism Encyclopedia of DNA Elements project (modENCODE) has produced a comprehensive annotation of D. melanogaster transcript models based on an enormous amount of high-throughput experimental data. However, some transcribed elements may not be functional, and technical artifacts may lead to erroneous inference of transcription. Inter-species comparison provides confidence to predicted annotation, since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function. We have performed RNA-Seq and CAGE-Seq experiments on more than 80 samples from multiple tissues and stages of 15 Drosophila species, including 8 previously unsequenced genomes. We have found strikingly conserved sequence, expression, and splicing for the vast majority of transcript models in modENCODE annotation (e.g. 99% exons of coding sequences (CDS), 88% exons of untranslated regions (UTR), and 87% splicing events), indicating that the transcriptome annotation is of very high quality. We also describe dynamic transcriptome evolution within the Drosophila genus, including conserved promoter structure, labile positions of transcription start sites, and rapidly evolving RNA-editing events. We demonstrate how this phylogenetic approach to DNA element validation will prove useful in the annotation of other high priority genomes, especially for genomes that are less compact than Drosophila (e.g. the vast majority of vertebrate genomes).
Project description:Extensive sex-biased expression has been seen in multiple surveys D. melanogaster. We were interested in broadly sampling sex-biased expression of orthologs and species- or lineage-specific genes in the Drosophila genus. To appropriately assay gene expression in multiple species, we used custom microarrays designed against each of six species that broadly sample the phylogenetic space represented by the newly completed genomes (D. simulans, D. yakuba, D. ananassae, D. pseudoobscura, D. virilis and D. mojavensis) and an array designed against D. melanogaster to determine the overall patterns of sex-biased expression in those species and their chromosome linkage. Keywords: other
Project description:Enzymes of the Ten Eleven Translocation (TET) family play a key role in the regulation of gene expression in many species by oxidizing 5-methylcytosine (5mC), a prominent epigenetic mark, into 5-hydroxymethylcytosine (5hmC). Yet, TET proteins also have non-canonical modes of action beyond 5mC oxidation, notably in Drosophila, whose genomes is devoid of 5mC. Here, we used a combination of NGS analyses to studied the funciton and mode of action of Tet in the central nervous system of Drosophila larvae.