Project description:Chronic pain is a prevalent condition with enormous economic burden. Opioids such as tramadol, codeine, and hydrocodone are commonly used to treat chronic pain; these drugs are activated to more potent opioid receptor agonists by the hepatic CYP2D6 enzyme. Results from clinical studies and mechanistic understandings suggest that CYP2D6-guided therapy will improve pain control and reduce adverse drug events. However, CYP2D6 is rarely used in clinical practice due in part to the demand for additional clinical trial evidence. Thus, we designed the ADOPT-PGx (A Depression and Opioid Pragmatic Trial in Pharmacogenetics) chronic pain study, a multicenter, pragmatic, randomized controlled clinical trial, to assess the effect of CYP2D6 testing on pain management. The study enrolled 1048 participants who are taking or being considered for treatment with CYP2D6-impacted opioids for their chronic pain. Participants were randomized to receive immediate or delayed (by 6 months) genotyping of CYP2D6 with clinical decision support (CDS). CDS encouraged the providers to follow the CYP2D6-guided trial recommendations. The primary study outcome is the 3-month absolute change in the composite pain intensity score assessed using Patient-Reported Outcomes Measurement Information System (PROMIS) measures. Follow-up will be completed in July 2024. Herein, we describe the design of this trial along with challenges encountered during enrollment.
Project description:Opioid prescribing for postoperative pain management is challenging because of inter-patient variability in opioid response and concern about opioid addiction. Tramadol, hydrocodone, and codeine depend on the cytochrome P450 2D6 (CYP2D6) enzyme for formation of highly potent metabolites. Individuals with reduced or absent CYP2D6 activity (i.e., intermediate metabolizers [IMs] or poor metabolizers [PMs], respectively) have lower concentrations of potent opioid metabolites and potentially inadequate pain control. The primary objective of this prospective, multicenter, randomized pragmatic trial is to determine the effect of postoperative CYP2D6-guided opioid prescribing on pain control and opioid usage. Up to 2020 participants, age ≥8 years, scheduled to undergo a surgical procedure will be enrolled and randomized to immediate pharmacogenetic testing with clinical decision support (CDS) for CYP2D6 phenotype-guided postoperative pain management (intervention arm) or delayed testing without CDS (control arm). CDS is provided through medical record alerts and/or a pharmacist consult note. For IMs and PM in the intervention arm, CDS includes recommendations to avoid hydrocodone, tramadol, and codeine. Patient-reported pain-related outcomes are collected 10 days and 1, 3, and 6 months after surgery. The primary outcome, a composite of pain intensity and opioid usage at 10 days postsurgery, will be compared in the subgroup of IMs and PMs in the intervention (n = 152) versus the control (n = 152) arm. Secondary end points include prescription pain medication misuse scores and opioid persistence at 6 months. This trial will provide data on the clinical utility of CYP2D6 phenotype-guided opioid selection for improving postoperative pain control and reducing opioid-related risks.
Project description:Opioids analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit their use. It has been recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. Further study indicated distinct alterations in the gut microbiome and metabolome following morphine treatment, contributing to the negative consequences associated with opioid use. However, it is unclear how opioids modulate gut homeostasis in the context of a hospital acquired bacterial infection. In the current study, a mouse model of C. rodentium infection was used to investigate the role of morphine in the modulation of gut homeostasis in the context of a hospital acquired bacterial infection. Citrobacter rodentium is a natural mouse pathogen that models intestinal infection by enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) and causes attaching and effacing lesions and colonic hyperplasia. Morphine treatment resulted in 1) the promotion of C. rodentium systemic dissemination, 2) increase in virulence factors expression with C. rodentium colonization in intestinal contents, 3) altered gut microbiome, 4) damaged integrity of gut epithelial barrier function, 5) inhibition of C. rodentium-induced increase in goblet cells, and 6) dysregulated IL-17A immune response. This is the first study to demonstrate that morphine promotes pathogen dissemination in the context of intestinal C. rodentium infection, indicating morphine modulates virulence factor-mediated adhesion of pathogenic bacteria and induces disruption of mucosal host defense during C. rodentium intestinal infection in mice. This study demonstrates and further validates a positive correlation between opioid drug use/abuse and increased risk of infections, suggesting over-prescription of opioids may increase the risk in the emergence of pathogenic strains and should be used cautiously. Therapeutics directed at maintaining gut homeostasis during opioid use may reduce the comorbidities associated with opioid use for pain management.