Project description:This study aimed to measure maize (Zea mays) plant nutrient content and nutrient removal in grain, and to evaluate the residual soil nitrogen, phosphorus, and potassium as impacted by planting date and density. Field experiments were conducted to evaluate six plant densities and seven planting dates using a split-split plot design with three replications. Besides the crop growth and yield parameters, six plants were collected at the maturity and soil was sampled from each plot for nutrient analysis. Plant N, P, and K concentrations varied with planting date and density and within the ranges of 0.6-1.024%, 0.054-0.127%, and 0.75-1.71%, respectively. Grain N, P, and K concentrations decreased with plant density and varied from 1.059 to 1.558%, 0.20 to 0.319%, and 0.29 to 0.43%, respectively. Soil residual nutrient varied with depth, planting density and date. Residual N concentration in the topsoil varied from 0.6 to 37.2 mg kg-1 in 2019 and from 1.5 to 11.2 mg kg-1 in 2020 and was high under the last two planting dates. Soil residual N concentration was higher in the second layer than in the topsoil. The N concentration in the third layer varied from 0.1 to 33.2 mg kg-1 and was impacted by plant density. Topsoil P did not vary among planting dates and densities. The second and third soil layers P concentration was not affected. There was 83% increase in topsoil K in 2020 compared to 2019, and a decrease of 65 and 23% in soil K was observed in the second and third soil layers, respectively. For maize production system sustainability, future research should use a holistic approach investigating the impact of planting date, plant density on crop growth, yield, nutrient uptake and remobilization, and soil properties under different fertilizer rates to develop the fertilizer recommendation for maize while reducing the environmental impact of the production system.
Project description:Many trees form ectomycorrhizal symbiosis with fungi. During symbiosis, the tree roots supply sugar to the fungi in exchange for nitrogen, and this process is critical for the nitrogen and carbon cycles in forest ecosystems. However, the extents to which ectomycorrhizal fungi can liberate nitrogen and modify the soil organic matter and the mechanisms by which they do so remain unclear since they have lost many enzymes for litter decomposition that were present in their free-living, saprotrophic ancestors. Using time-series spectroscopy and transcriptomics, we examined the ability of two ectomycorrhizal fungi from two independently evolved ectomycorrhizal lineages to mobilize soil organic nitrogen. Both species oxidized the organic matter and accessed the organic nitrogen. The expression of those events was controlled by the availability of glucose and inorganic nitrogen. Despite those similarities, the decomposition mechanisms, including the type of genes involved as well as the patterns of their expression, differed markedly between the two species. Our results suggest that in agreement with their diverse evolutionary origins, ectomycorrhizal fungi use different decomposition mechanisms to access organic nitrogen entrapped in soil organic matter. The timing and magnitude of the expression of the decomposition activity can be controlled by the below-ground nitrogen quality and the above-ground carbon supply.
Project description:Arbuscular mycorrhizal (AM) symbioses are an attractive means of improving the efficiency of soil phosphorus (P) that difficult to be used by plants and may provide a sustainable way of maintaining high yields while reducing P applications. However, quantifying the contribution of indigenous AM fungi on phosphorus uptake and yields of maize (Zea mays L.) under field conditions is not particularly clear. Mesh-barrier compartments were applied to monitor the distribution of hyphal P uptake throughout the experimental period under different planting densities and soil depths, over two consecutive years. AM symbioses enhanced plant P-acquisition efficiency, especially during the silking stage, and hyphae of AM fungi was assessed to contribution 19.4% at most to total available P content of soil. Moreover, the pattern of AM depletion of soil P generally matched shoot nutrient demand under the high planting density, which resulted in significantly increased yield in 2014. Although the hyphal length density was significantly decreased with soil depth, AM fungi still had high potential for P supply in deeper soil. It demonstrates the great potential of indigenous AM fungi to maize productivity in the high-yield area of China, and it would further provide the possibility of elimination P fertilizer applications to maintain high yields.
Project description:Maize (Zea mays L.) is one of the major cereal crops worldwide. Increasing planting density is an effective way to improve crop yield. However, plants grown under high-density conditions compete for water, nutrients, and light, which often leads to changes in productivity. To date, few studies have determined the transcriptomic differences in maize leaves in response to different planting densities. This study examined the whole-genome expression patterns in the leaves of maize planted under high and low densities to identify density-regulated genes. Leaves at upper, ear, and lower stem nodes were collected at the grain-filling stage of the maize hybrid Xianyu335 grown under low-density planting and high-density planting. In total, 72, 733, and 1,739 differentially expressed genes (DEGs) were identified in the respective upper, ear, and lower leaves under HDP. Upregulated and downregulated DEGs in the upper and lower leaves were similar in number, whereas upregulated DEGs in the ear leaves were significantly higher in number than the downregulated DEGs. Functional analysis indicated that genes responding to HDP-related stresses were mediated by pathways involving four phytohormones responsible for metabolism and signaling, osmoprotectant biosynthesis, transcription factors, and fatty acid biosynthesis and protein kinases, which suggested that these pathways are affected by the adaptive responses mechanisms underlying the physiological and biochemical responses of the leaves of maize planted at high density.
Project description:The association between soil microbes and plant roots is present in all natural and agricultural environments. Microbes can be beneficial, pathogenic, or neutral to the host plant development and adaptation to abiotic or biotic stresses. Progress in investigating the functions and changes in microbial communities in diverse environments have been rapidly developing in recent years, but the changes in root function is still largely understudied. The aim of this study was to determine how soil bacteria influence maize root transcription and microRNAs (miRNAs) populations in a controlled inoculation of known microbes over a defined time course. At each time point after inoculation of the maize inbred line B73 with ten bacterial isolates, DNA and RNA were isolated from roots. The V4 region of the 16S rRNA gene was amplified from the DNA and sequenced with the Illumina MiSeq platform. Amplicon sequencing of the 16S rRNA gene indicated that most of the microbes successfully colonized maize roots. The colonization was dynamic over time and varied with the specific bacterial isolate. Small RNA sequencing and mRNA-Seq was done to capture changes in the root transcriptome from 0.5 to 480 hours after inoculation. The transcriptome and small RNA analyses revealed epigenetic and transcriptional changes in roots due to the microbial inoculation. This research provides the foundational data needed to understand how plant roots interact with bacterial partners and will be used to develop predictive models for root response to bacteria.
Project description:As the major maize-cultivated areas, the one-season cropland of China is increasingly threatened by rapid urbanization and soybean rejuvenation. Quantifying the area changes of maize cropland is crucial for both food and energy security. Nonetheless, due to the lack of survey data related to planting types, long-term and fine-grained maize cropland maps in China dominated by small-scale farmlands are still unavailable. In this paper, we collect 75,657 samples based on field surveys and propose a deep learning-based method according to the phenology information of maize. With the generalization capability, the proposed method produces maize cropland maps with a resolution of 30 m from 2013 to 2021 in the one-season planting areas of China. The maize-cultivated areas derived from the maps are highly consistent with the data recorded by statistical yearbooks (R2 = 0.85 on average), which indicates that the produced maps are reliable to facilitate the research on food and energy security.
Project description:Maize rough dwarf virus (MRDV) is one of the main yield-limiting factors of maize in the Mediterranean. However, knowledge about the interactions between the agroecosystem and the virus-vector-host relationship continues to be limited. We used multi-model inference to test a landscape-scale approach together with variables measured in the field, and we estimated the effects of early and late planting on MRDV incidence. The results revealed that the virus incidence increased by 3% when the planting was delayed, and this increase was coincident with the first peak of the vector population. The variables at the field and landscape scales with a strong effect on virus incidence were the proportions of grasses in adjacent crops, in uncultivated areas, and in edges close to maize plants. Grass plant cover in the edges also affected virus incidence, but these effects varied with the planting period. These findings provide new insights into the causes of MRDV incidence and may provide some guidance to growers to reduce losses caused by the virus. Among the recommendations to be prioritized are early planting, management of grasses at field edges, and non-overlapping cultivation of maize and winter cereals in the same area.