Project description:The aim of this project was to explore the role of gut microbiota in the development of small intestine. The gut microbiota from different groups was used to treat the mice for 1 or 2 weeks. Then the small intestine samples were collected. The RNA was used for the RNA-seq analysis to search the role of gut microbiota in the development of small intestine. Groups: IMA100 mean gut microbiota from Alginate oligosaccharide 100mg/kg treated mice; IMA10 mean gut microbiota from Alginate oligosaccharide 10mg/kg treated mice; IMC mean gut microbiota from control group mice (dosed with water); Sa mean dosed with saline (no gut microbiota). "1" mean dosed for 1 week, "2" means dosed for 2 weeks.
Project description:We discovered an enrichment of linoleic acid, ether lipid, glycerolipid, and glycerophospholipid metabolism among the SARS-CoV-2 infected group, suggesting a link to SARS-CoV-2 entry and replication in host cells.The identified differences provide a new insight to enrich our understanding of SARS-CoV-2-related changes in gut microbiota, their metabolic capabilities, and potential screening biomarkers linked to COVID-19 disease severity.
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:Rationale: Recent studies suggest a potential link between gut bacterial microbiota dysbiosis and PAH, but the exact role of gut microbial communities, including bacteria, archaea, and fungi, in PAH remains unclear. Objectives: To investigate the role of gut microbiota dysbiosis in idiopathic pulmonary arterial hypertension (IPAH) and to assess the therapeutic potential of fecal microbiota transplantation (FMT) in modulating PAH progression. Methods: Using shotgun metagenomics, we analyzed gut microbial communities in IPAH patients and healthy controls. FMT was performed to transfer gut microbiota from IPAH patients or MCT-PAH rats to normal rats and from healthy rats to MCT-PAH rats. Hemodynamic measurements, echocardiography, histological examination, metabolomic and RNA-seq analysis were conducted to evaluate the effects of FMT on PAH phenotypes. Measurements and Main Results: Gut microbiota analysis revealed significant alterations in the bacterial, archaeal, and fungal communities in IPAH patients compared to healthy controls. FMT from IPAH patients induced PAH phenotypes in recipient rats. Conversely, FMT from healthy rats to IPAH rats significantly ameliorated PAH symptoms, restored gut microbiota composition, and normalized serum metabolite profiles. Specific microbial species were identified with high diagnostic potential for IPAH, improving predictive performance beyond individual or combined microbial communities. Conclusions: This study establishes a causal link between gut microbiota dysbiosis and IPAH and demonstrates the therapeutic potential of FMT in reversing PAH phenotypes. The findings highlight the critical role of bacterial, archaeal, and fungal communities in PAH pathogenesis and suggest that modulation of the gut microbiome could be a promising treatment strategy for PAH.