Project description:The exercises such as running alter gene expression in skeletal muscles. The gene expression profiling in human skeletal musles after running and not exercised were compared.
Project description:Three dimensional engineered culture systems are powerful tools to rapidly expand our knowledge of human biology and identify novel therapeutic targets for disease. Bioengineered skeletal muscle has been recently shown to recapitulate many features of native muscle biology. However, current skeletal muscle bioengineering approaches require large numbers of cells, reagents and labour, limiting their potential for high-throughput studies. Herein, we use a miniaturized 96-well micro-muscle platform to facilitate semi-automated tissue formation, culture and analysis of human skeletal micro muscles (hμMs). Utilising an iterative screening approach we define a serum-free differentiation protocol that drives rapid, directed differentiation of human myoblast to skeletal myofibres. The resulting hμMs comprised organised bundles of striated and functional myofibres, which respond appropriately to electrical stimulation. Additionally, we developed an optogenetic approach to chronically stimulate hμM to recapitulate known features of exercise training including myofibre hypertrophy and increased expression of metabolic proteins. Taken together, our miniaturized approach provides a new platform to enable high-throughput studies of human skeletal muscle biology and exercise physiology.
Project description:We generated a large transcriptome atlas of human skeletal muscles by collecting biopsies from 6 different muscles to determine molecular signatures that may be distinct between leg muscles. The biopsies were collected from gracilis (GR), semitendinosus (ST), vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), and gastrocnemius lateralis (GL) muscles. We also investigated molecular differences within the muscle by including two biopsies from the middle and distal sides of the semitendinosus muscle (STM and STD, respectively). In total, 128 samples from 20 individuals (aged 25 ± 3.6 yr) were analyzed.
Project description:This SuperSeries is composed of the following subset Series: GSE31839: Effect of wheel running exercise and myostatin depletion on gene expression in triceps brachii muscles of mice GSE31843: Effect of wheel running exercise on gene expression in skeletal muscles of mice Refer to individual Series
Project description:Phosphorylation of skeletal muscle proteins mediates cellular signaling and adaptive responses to exercise. Bioinformatic and machine learning approaches identified preclinical models that recapitulate human exercise responses. Feature selection showed that muscles from treadmill running mice and maximum intensity contractions shared the most differentially phosphorylated phosphosites (DPPS) with human exercise. Benefits of exercise in chronic diseases may be reduced by hyperammonemia, a consistent perturbation in chronic diseases and a muscle cytotoxin generated during contractile activity. Comparative analysis of experimentally validated molecules identified 63 DPPS on 265 differentially expressed phosphoproteins (DEpP) shared between hyperammonemia in myotubes and skeletal muscle from exercise models. Functional enrichment analyses revealed distinct temporal patterns of enrichment shared between hyperammonemia and exercise models including protein kinase A(PKA), calcium signaling, mitogen activated protein kinase(MAPK) signaling, and protein homeostasis. Our approach of feature extraction of comparative unbiased data allows for model selection and target identification to optimize responses to interventions.
Project description:The few investigations on exercise-induced global gene expression responses in human skeletal muscle haves typically focused at one specific mode of exercise and few such studies have implemented control measures. However, interpretation on distinct phenotype regulation necessitate comparison between essentially different modes of exercise and the ability to identify true exercise effects, necessitate implementation of independent non-exercise control subjects. Furthermore, muscle transkriptometranscriptome data made available through previous exercise studies can be difficult to extract and interpret by individuals that are inexperienced with bioinformatic procedures. In a comparative study, we; (1) investigated the human skeletal muscle transcriptome response to differentiated exercise and non-exercise control intervention, and; (2) aimed to develop a straightforward search tool to allow for easy extraction and interpretation of our data. We provide a simple spreadsheet containing transcriptome data allowing other investigators to see how mRNA of their interest behave in skeletal muscle following exercise, both endurance, strength and non-exercise. Our approach, allow investigators easy access to information on genuine transcriptome effects of differentiated exercise, to better aid hyporthesis-driven question in this particular field of research.
Project description:The few investigations on exercise-induced global gene expression responses in human skeletal muscle haves typically focused at one specific mode of exercise and few such studies have implemented control measures. However, interpretation on distinct phenotype regulation necessitate comparison between essentially different modes of exercise and the ability to identify true exercise effects, necessitate implementation of independent non-exercise control subjects. Furthermore, muscle transkriptometranscriptome data made available through previous exercise studies can be difficult to extract and interpret by individuals that are inexperienced with bioinformatic procedures. In a comparative study, we; (1) investigated the human skeletal muscle transcriptome response to differentiated exercise and non-exercise control intervention, and; (2) aimed to develop a straightforward search tool to allow for easy extraction and interpretation of our data. We provide a simple spreadsheet containing transcriptome data allowing other investigators to see how mRNA of their interest behave in skeletal muscle following exercise, both endurance, strength and non-exercise. Our approach, allow investigators easy access to information on genuine transcriptome effects of differentiated exercise, to better aid hyporthesis-driven question in this particular field of research. 18 subjects were divided into 3 groups, performing 12 weeks of Endurance or Strength training or no training. Biopsies for microarray were take before (Pre) and 2½ and 5 hours after the last training session. Isolated RNA from these biopsies were then measured with the Affymetrix Human Gene 1.0 ST arrays.
Project description:Exercise training increases endurance by inducing global gene expression changes in skeletal muscles. The extent to which the genetic effects of exercise can be mimicked by synthetic drugs is unknown. We measured global skeletal muscle expression in sedentary and exercised mice treated with vehicle or PPARdelta ligand GW1516. PPARdelta is a transcriptional regulator of muscle oxidative metabolism and fatigue resistance. Keywords: Pharmacology study
Project description:High-intensity intermittent exercise training (HIIT) has been proposed as an effective approach for improving both anaerobic and aerobic capacities. However, the molecular response of muscles to HIIT remains unknown. We used microarray to examine the effects of HIIT on global gene expression in human skeletal muscle.