Project description:In animals, microRNAs frequently form families with related sequences. The functional relevance of miRNA families and the relative contribution of family members to target repression have remained, however, largely unexplored. Here, we used the C. elegans miR-58 miRNA family, comprised primarily of four highly abundant members: miR-58.1, miR-80, miR-81 and miR-82, as a model to investigate the redundancy of miRNA family members and their impact on target expression in an in vivo setting.
Project description:A central question in transcription factor biology is how a specific member of a transcription factor family occupies a promoter in vivo, when all family members bind the same consensus site in vitro. To uncover the mechanisms regulating DNA binding specificity within transcription factor families, we have used the techniques of chromatin immunoprecipitation coupled with genome-wide microarray analysis to query the occupancy of three members of the ETS transcription factor family in a human T-cell line. Unexpectedly, redundant occupancy was frequently detected while specific occupancy was less likely. An unbiased bioinformatics approach correlated redundant binding with consensus ETS binding sequences near transcription start sites, whereas specific binding sites diverged dramatically from the consensus, were coupled with a site for a cooperative binding partner, and were found further from transcription start sites. The specific and redundant DNA binding modes illustrate the regulation of transcription factor specificity in vivo and suggest two distinct roles for members of the ETS transcription factor family. Keywords: ChIP-chip
2007-07-27 | GSE7449 | GEO
Project description:Genome sequences of the newly cultivated members of family Halieaceae (OM60/NOR5 clade)
Project description:Small RNAs have variety of important roles in plant development, stress responses, and other processes. They exert their influence by guiding mRNA cleavage, translational repression, and chromatin modification. To identify novel and regulated rice miRNAs, 62 small RNA libraries were constructed from rice plants and deeply sequenced with Illumina technology. The libraries represent several tissues from control plants and plants subjected to different environmental stress treatments. More than 94 million genome-matched reads were obtained resulting in more than 16 million distinct small RNA sequences. This allowed an evaluation with current criteria of about 400 annotated miRNAs and the finding that among these, about 150 had siRNA-like characteristics. Seventy nine new miRNAs were identified and miRNAs were distinguished that are regulated in response to water stress, nutrient stress, or temperature stress. Among the new examples of miRNA regulation were members of the same miRNA family that were differentially regulated in different organs and had distinct sequences Some of these distinct family members result in differential target cleavage and provide new insight about how an agriculturally important rice phenotype could be controlled in the panicle. This high resolution analysis of rice miRNAs should be relevant to plant miRNAs in general, particularly in the Poaceae.