Project description:Colorectal polyp is known a precursor of colorectal cancer (CRC) that holds an increased risk for progression to CRC. Circulating cell-free DNA(cfDNA) methylation has shown favorable performance in the detection and monitoring the malignant progression in a variety of cancers. Here, we conducted a study to discovery cfDNA methylation markers for the diagnosis of CRC. We first performed a genome-wide analysis using the Infinium HumanMethylationEPIC BeadChip array to identify differentially methylated CpGs (DMCs) between 8 CRC and 8 polyp tissues. Then, we validated DMCs in a larger tissue cohort and four methylation markers (cg04486886, cg06712559, cg13539460 and cg27541454) were selected as the methylation markers in tissue by LASSO and random forest models. A diagnosis prediction model was bulit based on the four markers and the methylaion diagnosis score (md-score) can effectively discriminate patients with CRC from polyp tissues. Finally, a single cfDNA methylation marker, cg27541454, was confirmed hypermethylated in CRC in the plasma validation cohort. Together, our findings suggested that the md-score derived from tissue could robustly detect CRC from polpy patients, and cg27541454 may be a promising candidate non-invasive biomarker for CRC early diagnosis.
Project description:Identification of molecular features that predict the malignant potential of a polyp is a major clinical step in individualizing polyp patient management. Why does one polyp develop into cancer while another does not? Our first aim was to validate our original findings on differences between polyps based on transformation in an expanded and independent cohort of patients. Our next aim was to identify the molecular events that define the transition point of polyps to cancer based on the aggressiveness of the polyp (polyp outcome phenotype) to develop a cancer risk prediction model for polyps.
Project description:Identification of molecular features that predict the malignant potential of a polyp is a major clinical step in individualizing polyp patient management. Why does one polyp develop into cancer while another does not? Our first aim was to validate our original findings on differences between polyps based on transformation in an expanded and independent cohort of patients. Our next aim was to identify the molecular events that define the transition point of polyps to cancer based on the aggressiveness of the polyp (polyp outcome phenotype) to develop a cancer risk prediction model for polyps.
Project description:Here we investigate the transcriptional landscapes of nasal polyp IgD+ (naïve-like) B cells, nasal polyp ASC, and blood naïve B cells using RNA-seq. These data found that nasal polypP IgD+ naïve-like B cells are activated and similar to nasal polyp ASC and distinct from circulating B cells in the blood.
Project description:We report the RNA-seq data of 40 advanced colorectal adenoma patients form Dongguk University Ilsan International Hospital. The polyps with a diameter of 1cm or greater were regarded as advenced colorectal adenoma and obtained through colonoscopy. The data consist of 22 tublar adenoma, 6 tublovillous adenoma, 5 sessile serrated adenoma/polyp, 1 traditional serrated adenoma, intramucosal adenocarcinoma, neuroendocrine tumor, hyperplastic polyp, inflammatory polyp, high grade dysplasia, and atypical glands with adjacent hyperplastic mucosa.