Project description:AAV-genome population sequencing detects the repair of mutated ITR structures and the impact of guide RNA cassette designs on vector genome integrity
Project description:Adeno-associated viral vectors (AAV) are a leading delivery system for gene therapy in animal models and humans. With several FDA-approved AAV gene therapies on the market, issues related to vector manufacturing have become increasingly important. In this study, we focused on potentially toxic DNA contaminants that can arise from AAV proviral plasmids, the raw materials required for manufacturing recombinant AAV in eukaryotic cells. Typical AAV proviral plasmids are circular DNAs containing a therapeutic gene cassette flanked by natural AAV inverted terminal repeat (ITR) sequences, and a plasmid backbone carrying prokaryotic sequences required for plasmid replication and selection in bacteria. While the majority of AAV particles package the intended therapeutic payload, some capsids instead package the bacterial sequences located on the proviral plasmid backbone. Since ITR sequences also have promoter activity, potentially toxic bacterial open reading frames can be produced in vivo, thereby representing a safety risk. In this study, we describe a new AAV proviral plasmid for vector manufacturing that (1) significantly decreases cross-packaged bacterial sequences; (2) increases correctly packaged AAV payloads; and (3) blunts ITR-driven transcription of cross-packaged material to avoid expressing potentially toxic bacterial sequences. This system may help improve the safety of AAV vector products.
Project description:Adeno-associated viral vectors (AAV) are a leading delivery system for gene therapy in animal models and humans. With several FDA-approved AAV gene therapies on the market, issues related to vector manufacturing have become increasingly important. In this study, we focused on potentially toxic DNA contaminants that can arise from AAV proviral plasmids, the raw materials required for manufacturing recombinant AAV in eukaryotic cells. Typical AAV proviral plasmids are circular DNAs containing a therapeutic gene cassette flanked by natural AAV inverted terminal repeat (ITR) sequences, and a plasmid backbone carrying prokaryotic sequences required for plasmid replication and selection in bacteria. While the majority of AAV particles package the intended therapeutic payload, some capsids instead package the bacterial sequences located on the proviral plasmid backbone. Since ITR sequences also have promoter activity, potentially toxic bacterial open reading frames can be produced in vivo, thereby representing a safety risk. In this study, we describe a new AAV proviral plasmid for vector manufacturing that (1) significantly decreases cross-packaged bacterial sequences; (2) increases correctly packaged AAV payloads; and (3) blunts ITR-driven transcription of cross-packaged material to avoid expressing potentially toxic bacterial sequences. This system may help improve the safety of AAV vector products.
Project description:Decades ago, Friedmann and Roblin postulated several barriers to gene therapy, including tissue targeting, delivery across the blood⁻brain barrier (BBB), and host immune responses. These issues remain pertinent till today. Since then, several advances have been made in elucidating structures of adeno-associated virus (AAV) serotypes, antibody epitopes, and ways to modify antibody-binding sites. AAVs capsid has also been engineered to re-direct tissue tropism, reduce ubiquitination, and promote passage across the BBB. Furthermore, the use of high(er) dose recombinant AAV (rAAV) has been accompanied by a better understanding of immune responses in both experimental animals and early clinical trials, and novel work is being performed to modulate the immune response. While the immune responses to rAAV remains a major challenge in translating experimental drugs to approved medicine, and will likely require more than a single solution, we now better understand the hurdles to formulate and test experimental solutions to surmount them.
Project description:Adeno-associated virus (AAV) is the leading vector in emerging treatments of inherited diseases. Higher transduction efficiencies and cellular specificity are required for broader clinical application, motivating investigations of virus-host molecular interactions during cell entry. High-throughput methods are identifying host proteins more comprehensively, with subsequent molecular studies revealing unanticipated complexity and serotype specificity. Cryogenic electron microscopy (cryo-EM) provides a path towards structural details of these sometimes heterogeneous virus-host complexes, and is poised to illuminate more fully the steps in entry. Here presented, is progress in understanding the distinct steps of glycan attachment, and receptor-mediated entry/trafficking. Comparison with structures of antibody complexes provides new insights on immune neutralization with implications for the design of improved gene therapy vectors.
Project description:Recombinant adeno-associated virus (rAAV) vectors are one of the most promising in vivo gene delivery tools. Several features make rAAV vectors an ideal platform for gene transfer. However, the high homology with the parental wild-type virus, which often infects humans, poses limitations in terms of immune responses associated with this vector platform. Both humoral and cell-mediated immunity to wild-type AAV have been documented in healthy donors, and, at least in the case of anti-AAV antibodies, have been shown to have a potentially high impact on the outcome of gene transfer. While several factors can contribute to the overall immunogenicity of rAAV vectors, vector design and the total vector dose appear to be responsible of immune-mediated toxicities. While preclinical models have been less than ideal in predicting the outcome of gene transfer in humans, the current preclinical body of evidence clearly demonstrates that rAAV vectors can trigger both innate and adaptive immune responses. Data gathered from clinical trials offers key learnings on the immunogenicity of AAV vectors, highlighting challenges as well as the potential strategies that could help unlock the full therapeutic potential of in vivo gene transfer.
Project description:Gene delivery vectors based on adeno-associated virus (AAV) have been utilized in a large number of gene therapy clinical trials, which have demonstrated their strong safety profile and increasingly their therapeutic efficacy for treating monogenic diseases. For cancer applications, AAV vectors have been harnessed for delivery of an extensive repertoire of transgenes to preclinical models and, more recently, clinical trials involving certain cancers. This review describes the applications of AAV vectors to cancer models and presents developments in vector engineering and payload design aimed at tailoring AAV vectors for transduction and treatment of cancer cells. We also discuss the current status of AAV clinical development in oncology and future directions for AAV in this field.
Project description:Glioblastoma (GBM) is the most common and malignant Grade IV primary craniocerebral tumor caused by glial cell carcinogenesis with an extremely poor median survival of 12-18 months. The current standard treatments for GBM, including surgical resection followed by chemotherapy and radiotherapy, fail to substantially prolong survival outcomes. Adeno-associated virus (AAV)-mediated gene therapy has recently attracted considerable interest because of its relatively low cytotoxicity, poor immunogenicity, broad tissue tropism, and long-term stable transgene expression. Furthermore, a range of gene therapy trials using AAV as vehicles are being investigated to thwart deadly GBM in mice models. At present, AAV is delivered to the brain by local injection, intracerebroventricular (ICV) injection, or systematic injection to treat experimental GBM mice model. In this review, we summarized the experimental trials of AAV-based gene therapy as GBM treatment and compared the advantages and disadvantages of different AAV injection approaches. We systematically introduced the prospect of the systematic injection of AAV as an approach for AAV-based gene therapy for GBM.
Project description:Adeno-associated virus (AAV) entry is determined by its interactions with specific surface glycans and a proteinaceous receptor(s). Adeno-associated virus receptor (AAVR) (also named KIAA0319L) is an essential cellular receptor required for the transduction of vectors derived from multiple AAV serotypes, including the evolutionarily distant serotypes AAV2 and AAV5. Here, we further biochemically characterize the AAV-AAVR interaction and define the domains within the ectodomain of AAVR that facilitate this interaction. By using a virus overlay assay, it was previously shown that the major AAV2 binding protein in membrane preparations of human cells corresponds to a glycoprotein with a molecular mass of 150 kDa. By establishing a purification procedure, performing further protein separation by two-dimensional electrophoresis, and utilizing mass spectrometry, we now show that this glycoprotein is identical to AAVR. While we find that AAVR is an N-linked glycosylated protein, this glycosylation is not a strict requirement for AAV2 binding or functional transduction. Using a combination of genetic complementation with deletion constructs and virus overlay assays with individual domains, we find that AAV2 functionally interacts predominantly with the second Ig-like polycystic kidney disease (PKD) repeat domain (PKD2) present in the ectodomain of AAVR. In contrast, AAV5 interacts primarily through the first, most membrane-distal, PKD domain (PKD1) of AAVR to promote transduction. Furthermore, other AAV serotypes, including AAV1 and -8, require a combination of PKD1 and PKD2 for optimal transduction. These results suggest that despite their shared dependence on AAVR as a critical entry receptor, different AAV serotypes have evolved distinctive interactions with the same receptor.IMPORTANCE Over the past decade, AAV vectors have emerged as leading gene delivery tools for therapeutic applications and biomedical research. However, fundamental aspects of the AAV life cycle, including how AAV interacts with host cellular factors to facilitate infection, are only partly understood. In particular, AAV receptors contribute significantly to AAV vector transduction efficiency and tropism. The recently identified AAV receptor (AAVR) is a key host receptor for multiple serotypes, including the most studied serotype, AAV2. AAVR binds directly to AAV2 particles and is rate limiting for viral transduction. Defining the AAV-AAVR interface in more detail is important to understand how AAV engages with its cellular receptor and how the receptor facilitates the entry process. Here, we further define AAV-AAVR interactions, genetically and biochemically, and show that different AAV serotypes have discrete interactions with the Ig-like PKD domains of AAVR. These findings reveal an unexpected divergence of AAVR engagement within these parvoviruses.