Project description:The soil-borne fungal pathogen Fusarium oxysporum f.sp. is responsible for Fusarium wilt. cubense tropical race 4, is one of the most devastating diseases in bananas, regarded as a major yield-reducing factor in the banana industry worldwide. Understanding the molecular interactions in banana defense responses is an important tool to reveal the unexplained processes that underlie banana resistance to Fusarium oxysporum f. sp. cubense tropical race 4. The seedlings of moderately resistant variety Guijiao No. 9 and a susceptible cultivar Guijiao No. 6 were cultured in tissue culture, and the characterize protein profile expression changes responses to after inoculation the Fusarium oxysporum f. sp. of cubense tropical race 4 were detected by isobaric labeling based on MS2 quantification at the 2nd, 4th, 6th and 8th day. Interestingly, new genes in the resistance of banana to Foc37-GFP were identified, including several other serine/threonine-protein kinase, AvrRpt-cleavage domain-containing protein, peptidylprolyl isomerase and some Jacalin-type lectin domain, the resistance-related pathways “ribosome”, “microbial metabolism in diverse environments”,“carbon metabolism”,“biosynthesis of amino acids”and “biosynthesis of antibiotics” pathways were significantly enriched, the resistant banana cultivar Guijiao 9 shows formation of different constitutive cell barriers to restrict spreading of Fusarium oxysporum f. sp. cubense tropical race 4. In this study, the dynamic change root proteomic of moderately resistant cultivar Guijiao 9 and a susceptible cultivar Guijiao 6 were characterized and provided a differentially expressed proteins comparative analysis of the compatible and incompatible interaction between Fusarium oxysporum f. sp. cubense tropical race 4 and banana. These findings provide a substantial contribution to existing sequence resources for banana, and a strong basis for future proteomic research. The proteins that displayed two-fold changes in intensity are related to biochemical processes that may be differentially altered at various times after Fusarium oxysporum f. sp. cubense tropical race 4 infection. These findings will accelerate research on resistance in banana to Fusarium oxysporum f. sp. cubense tropical race 4 and contribute to a better understanding of the banana defense mechanism to plant pathogens, hopefully.
Project description:We report the first data of RNA sequencing of banana Musa acuminata cv. Pisang ambon kuning (AAA group) inoculated by two different endophyte bacteria named Stenothropomonas nitritireducens (BR-49) and Kocuria rhizophila (SL-08), respectively, prior to Fusarium oxysprorum f.sp. cubense tropical race 4 (Foc TR4).
Project description:Background: Banana (Musa) is one of the most important crops grown in tropical and sub-tropical areas. Cavendish, the most widely grown banana cultivar, is a triploid derived from an intra-species cross. Cavendish is relatively resistant to Race 1 of Fusarium oxysporum f. sp. Cubense (Foc1) which caused wide spread Panama disease during 1960s but is susceptible to Race 4 of Foc (Foc4) which has been causing epidemics in large areas of banana fields in Asia and Australia in the last decade and is threatening world banana production. The genome of the diploid species Musa acuminata (AA) which is the ancestor of a majority of cultivated banana has recently been sequenced. Availability of banana transcriptomes will be highly useful for improving banana genome annotation and assembly and for banana biological research. The knowledge of global gene expression patterns influenced by infection by different Foc races will help to understand the pathogenesis processes and the host responses to the infection. Results: RNA samples extracted from different organs of the Cavendish cultivar were pooled for deep sequencing using the Illumina sequencing technology. The assembled reads were aligned with the genome of M. accuminata and with sequences in the Genbank databases. The analysis led to identification of 842 genes that were not annotated by the Musa genome project. A large number of simple nucleotide polymorphisms (SNPs) and short insertions and deletion (indels) were identified from the transcriptome data. GFP-expressing Foc1 and Foc4 was generated and used to monitor the infection process. Digital gene expression (DGE) profiling analysis was carried out to obtain transcriptome profiles influenced by infection with Foc1 and Foc4 in banana roots at 3, 27, and 51 hours post-inoculation. Both Foc1 and Foc4 were found to be able to invade banana roots and spread to root vascular tissues in the first two days following inoculation. The profiling analysis revealed that inoculation with Foc1 and Foc4 caused similar changes in the gene expression profiles in the infected banana roots. The Foc infection led to induction of many well-known defense-related genes including PATHOGENESIS-RELATED 5 (PR5), PAL, and a lignin-forming peroxidase. The WRKY40 gene, which is a negative regulator of the defense pathway in Arabidopsis, was quickly and strongly suppressed by the infection. Two genes encoding the ethylene biosynthetic enzyme ACC oxidase and several ethylene-responsive transcription factors were among strongly induced genes by both Foc1 and Foc4 Conclusions: Both Foc1 and Foc4 are able to spread into the vascular system of banana roots during the first two days of the infection process and their infection led to similar gene expression profiles in banana roots. The transcriptome profiling analysis indicates that the ethylene synthetic and signalling pathways were activated in response to the Foc infection. Digital gene expression (DGE) profiling analysis was carried out to obtain transcriptome profiles influenced by infection with Foc1 and Foc4 in banana roots at 3, 27, and 51 hours post-inoculation. The plants whose roots were immersed in the culture medium without the pathogen (mock inoculation) were used as a control.
Project description:Background: Banana (Musa) is one of the most important crops grown in tropical and sub-tropical areas. Cavendish, the most widely grown banana cultivar, is a triploid derived from an intra-species cross. Cavendish is relatively resistant to Race 1 of Fusarium oxysporum f. sp. Cubense (Foc1) which caused wide spread Panama disease during 1960s but is susceptible to Race 4 of Foc (Foc4) which has been causing epidemics in large areas of banana fields in Asia and Australia in the last decade and is threatening world banana production. The genome of the diploid species Musa acuminata (AA) which is the ancestor of a majority of cultivated banana has recently been sequenced. Availability of banana transcriptomes will be highly useful for improving banana genome annotation and assembly and for banana biological research. The knowledge of global gene expression patterns influenced by infection by different Foc races will help to understand the pathogenesis processes and the host responses to the infection. Results: RNA samples extracted from different organs of the Cavendish cultivar were pooled for deep sequencing using the Illumina sequencing technology. The assembled reads were aligned with the genome of M. accuminata and with sequences in the Genbank databases. The analysis led to identification of 842 genes that were not annotated by the Musa genome project. A large number of simple nucleotide polymorphisms (SNPs) and short insertions and deletion (indels) were identified from the transcriptome data. GFP-expressing Foc1 and Foc4 was generated and used to monitor the infection process. Digital gene expression (DGE) profiling analysis was carried out to obtain transcriptome profiles influenced by infection with Foc1 and Foc4 in banana roots at 3, 27, and 51 hours post-inoculation. Both Foc1 and Foc4 were found to be able to invade banana roots and spread to root vascular tissues in the first two days following inoculation. The profiling analysis revealed that inoculation with Foc1 and Foc4 caused similar changes in the gene expression profiles in the infected banana roots. The Foc infection led to induction of many well-known defense-related genes including PATHOGENESIS-RELATED 5 (PR5), PAL, and a lignin-forming peroxidase. The WRKY40 gene, which is a negative regulator of the defense pathway in Arabidopsis, was quickly and strongly suppressed by the infection. Two genes encoding the ethylene biosynthetic enzyme ACC oxidase and several ethylene-responsive transcription factors were among strongly induced genes by both Foc1 and Foc4 Conclusions: Both Foc1 and Foc4 are able to spread into the vascular system of banana roots during the first two days of the infection process and their infection led to similar gene expression profiles in banana roots. The transcriptome profiling analysis indicates that the ethylene synthetic and signalling pathways were activated in response to the Foc infection.
Project description:MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs that regulate targeted mRNAs by degrading or repressing translation, considered as post-transcrption regulators. So far, a large number of miRNAs have been discovered in model plants, but little information is available on miRNAs in banana. In this study, by sequencing the small RNA (sRNA) transcriptomes of Fusarium wilt resistant and susceptible banana varieties, 139 members in 38 miRNA families were discovered, and six out of eight new miRNAs were confirmed by RT-PCR. According to the analysis of sRNA transcriptome data and qRT-PCR verification, some miRNAs were differentially expressed between Fusarium wilt resistant and susceptible banana varieties. Two hundred and ninety-nine and 31 target genes were predicted based on the draft maps of banana B genome and Fusarium oxysporum (FOC1, FOC4) genomes respectively. Specifically, two important pathogenic genes in Fusarium oxysporum genomes, feruloyl esterase gene and proline iminopeptidase gene, were targeted by banana miRNAs. These novel findings may provide a new strategy for the prevention and control of Fusarium wilt in banana.
2016-10-14 | GSE74005 | GEO
Project description:Cultivar-specific markers, mutations, and chimerisim of Cavendish banana somaclonal variants resistant to Fusarium oxysporum f. sp. cubense tropical race 4
Project description:Banana is the most popular fruit and also a major food crop for millions of people around the world. Fusarium wilt is a serious threat to global banana production, which nowadays mainly relies on "Cavendish" banana cultivars. Recently the disease emerged on "Cavendish" banana and since then spreads throughout South-East Asia, to the Middle-East and the Indian subcontinent and leaped into Africa. Here, we reported the presence of Fusarium oxysporum f.sp. cubense Tropical Race 4 (Foc TR4) in "Cavendish" plantations in Laos, Myanmar, and Vietnam (the Greater Mekong Subregion)
Project description:Deep sequencing of mRNA from Fusarium oxysporum f. sp. Cubense 1 and 4 after infecting Musa acuminata 0h and 48h. Analysis of ploy(A)+ RNA of different hours after infecting of Musa acuminata